1426
G. A. Holloway et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1422–1427
Table 5. Biological activity of selected 2-iminobenzimidazoles
Compound
TR enzyme Ki for
competitive binding (lM)
T. brucei rhodesiense
Cytotoxicity
IC50 (lM)
Human GR enzyme
IC50 (lM)
IC50 (lM)
3
5.4
3.6
1.9
0.6
0.2
1.3
46
9
>100
>100
>100
16
25
144
3. Paulino, M.; Iribarne, F.; Dubin, M.; Aguilera-Morales,
S.; Tapia, O.; Stoppani, A. O. M. Mini-Rev. Med. Chem.
2005, 5, 499.
4. Sundar, S.; More, D. K.; Singh, M. K.; Singh, V. P.;
Sharma, S.; Makharia, A.; Kumar, P. C. K.; Murray, H.
W. Clin. Infect. Dis. 2000, 31, 1104.
5. Croft, S. L.; Sundar, S.; Fairlamb, A. H. Clin. Microbiol.
Rev. 2006, 19, 111.
6. Fairlamb, A. H.; Blackburn, P.; Ulrich, P.; Chait, B. T.;
Cerami, A. Science 1985, 227, 1485.
7. Dumas, C.; Ouellette, M.; Tovar, J.; Cunningham, M. L.;
Fairlamb, A. H.; Tamar, S.; Olivier, M.; Papadopoulou,
B. EMBO J. 1997, 16, 2590.
8. Krieger, S.; Schwarz, W.; Ariyanayagam, M. R.; Fair-
lamb, A. H.; Krauth-Siegel, R. L.; Clayton, C. Mol.
Microbiol. 2000, 35, 542.
9. Schmidt, A.; Krauth-Siegel, R. Curr. Top. Med. Chem.
2002, 2, 1239.
10. Tovar, J.; Wilkinson, S.; Mottram, J. C.; Fairlamb, A. H.
Mol. Microbiol. 1998, 29, 653.
The biological inhibitory activity of a small selection of
2-iminobenzimidazoles (3, 16, 25) was further explored
in whole parasite and cytotoxicity assays (Table 5).31
The 2-iminobenzimidazoles tested displayed potent try-
panocidal activity against Trypanosoma brucei rhodes-
iense (STB 900) and relatively low cytotoxicity
against a human bladder carcinoma cell line (HT-29).
It is possible that the cytotoxicity observed, particular-
ly with compound 16, may be due to inhibition of hu-
man GR. However this is unlikely due to their lack of
activity in an in vitro GR assay (Table 5).32 Consider-
ing the low micromolar Ki values obtained for these
compounds against the TR enzyme, the trypanocidal
activity particularly for 3 and 16 is unexpectedly po-
tent. This could be due to the active uptake of these
compounds by the parasite which is known to occur
via a variety of mechanisms for other basic trypanoci-
dal compounds.33,34
11. Marsh, I. R.; Bradley, M. Eur. J. Biochem. 1997, 243, 690.
12. Hunter, W. N.; Bailey, S.; Habash, J.; Harrop, S. J.;
Helliwell, J. R.; Aboagye-Kwarteng, T.; Smith, K.; Fair-
lamb, A. H. J. Mol. Biol. 1992, 227, 322.
13. Krauth-Siegel, R. L.; Meiering, S. K.; Schmidt, H. Biol.
Chem. 2003, 384, 539.
14. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P.
J. Adv. Drug Delivery Rev. 1997, 23, 3.
15. Oprea, T. I.; Davis, A. M.; Teague, S. J.; Leeson, P. D.
J. Chem. Inf. Comput. Sci 2001, 41, 1308.
16. Hamilton, C. J.; Saravanamuthu, A.; Eggleston, I. M.;
Fairlamb, A. H. Biochem. J. 2003, 369, 529.
17. Briefly the assay determined the rate of TNB formation
which was measured continuously for 15 min at 412 nm in
a 40 lL assay volume at room temperature. Each reaction
mixture contained the following constituents: TR
(0.2 mU), T[S]2 (6 lM), DTNB (100 lM), compound
(25 lM) and NADPH (150 lM).
In summary, the application of high-throughput screen-
ing of a lead discovery library of 100,000 compounds
identified nine novel chemical classes of TR inhibitors.
In particular the 2-iminobenzimidazole class was found
to have good development potential. The essential phar-
macophore for TR inhibitory activity was identified by
investigation of a series of analogues and further biolog-
ical testing revealed that members of this new class of
TR inhibitor have potent trypanocidal activity against
T. brucei rhodesiense, and low cytotoxicity against hu-
man cells. This chemical series has significant potential
for further development as a new class of therapeutics
for trypanosome-mediated diseases.
18. Zhang, J.-H.; Chung, T. D. Y.; Oldenburg, K. R.
J. Biomol. Screen. 1999, 4, 67.
Acknowledgments
19. Saravanamuthu, A.; Vickers, T. J.; Bond, C. S.; Peterson,
M. R.; Hunter, W. N.; Fairlamb, A. H. J. Biol. Chem.
2004, 279, 29493.
20. Chan, C.; Yin, H.; Garforth, J.; McKie, J. H.; Jaouhari,
R.; Speers, P.; Douglas, K. T.; Rock, P. J.; Yardley, V.;
Croft, S. L.; Fairlamb, A. H. J. Med. Chem. 1998, 41,
148.
21. Garforth, J.; Yin, H.; McKie, J. H.; Douglas, K. T.;
Fairlamb, A. H. J. Enzym. Inhib. 1997, 12, 161.
22. The identity of synthesized compounds was confirmed by
NMR and MS and their purity was determined to be
>95%.
23. Da Settimo, A.; Da Settimo, F.; Marini, A. M.; Primofi-
ore, G.; Salerno, S.; Viola, G.; Da Via, L.; Magno, S. M.
Eur. J. Med. Chem. 1998, 33, 685.
This investigation received financial support from the
UNICEF/UNDP/World Bank/WHO special program
for research and training in tropical diseases (TDR).
We gratefully acknowledge Bill Charman, the center
for drug candidate optimization (CDCO), for advice,
valuable discussion and encouragement. We also express
our gratitude for the support of the TDR screening net-
work, in particular Reto Brun and his group at the Swiss
tropical institute for conducting the anti-trypanosomal
and cytoxicity assays. We also acknowledge Ahilan
Saravanamuthu for conducting the early TR assay
development.
24. Morishita, S.; Saito, T.; Hirai, Y.; Shoji, M.; Mishima, Y.;
Kawakami, M. J. Med. Chem. 1988, 31, 1205.
25. Monosubstitution: Shinkai, S.; Harada, A.; Ishikawa, Y.;
Manabe, O.; Yoneda, F. J. Chem. Soc., Perkin. Trans.
1982, 2, 125.
References and notes
2. Fairlamb, A. H. Trends Parasitol. 2003, 19, 488.