Paper
Organic & Biomolecular Chemistry
Biotransformations
8 H. Li and T. L. Poulos, Nat. Struct. Biol., 1997, 4, 140–146.
9 M. A. Noble, C. S. Miles, S. K. Chapman, D. A. Lysek,
A. C. Mackay, G. A. Reid, R. P. Hanzlik and A. W. Munro,
Biochem. J., 1999, 339, 371–379.
10 L. A. Cowart, J. R. Falck and J. H. Capdevila, Arch. Biochem.
Biophys., 2001, 387, 117–124.
11 F. Hannemann, A. Bichet, K. M. Ewen and R. Bernhardt,
Biochim. Biophys. Acta, Gen. Subj., 2007, 1770, 330–344.
12 S. S. Boddupalli, R. W. Estabrook and J. A. Peterson, J. Biol.
Chem., 1990, 265, 4233–4239.
13 S. D. Munday, N. K. Maddigan, R. J. Young and S. G. Bell,
Biochim. Biophys. Acta, Gen. Subj., 2016, 1860, 1149–1162.
14 M. W. Peters, P. Meinhold, A. Glieder and F. H. Arnold,
J. Am. Chem. Soc., 2003, 125, 13442–13450.
15 G. D. Roiban and M. T. Reetz, Chem. Commun., 2015, 51,
2208–2224.
16 T. W. B. Ost, C. S. Miles, J. Murdoch, Y. F. Cheung,
G. A. Reid, S. K. Chapman and A. W. Munro, FEBS Lett.,
2000, 486, 173–177.
17 F. E. Zilly, J. P. Acevedo, W. Augustyniak, A. Deege and
M. T. Reetz, Angew. Chem., Int. Ed., 2011, 50, 2720–2724.
18 S. D. Munday, S. Dezvarei and S. G. Bell, ChemCatChem,
2016, 8, 2789–2796.
19 S. D. Munday, O. Shoji, Y. Watanabe, L. L. Wong and
S. G. Bell, Chem. Commun., 2016, 52, 1036–1039.
20 N. Nakayama, T. Asako and H. Shoun, J. Biochem., 1996,
119, 435–440.
Biotransformations were performed in 40 mL amber vials,
with a reaction mixture consisting of 200 mM potassium phos-
phate buffer pH 8, 200 mM glucose, 4 μM CYP505A30, 0.2 U
mL−1 BmGDH and 0.3 mM NADP+ in a final volume of 1 mL.
Reactions were started with the addition of substrate (10 mM
of fatty alcohols or fatty acid or 200 µL of alkane) and incu-
bated at 30 °C for 0.5, 2, and 24 hours with shaking (200 rpm).
For cell-free extract (CFE) biotransformations cells expressing
CYP505A30 were resuspended (0.2 g wet weight cells mL−1) in
buffer D (200 mM potassium phosphate buffer pH 8, 100 mM
glucose) and disrupted as stated above, followed by centrifu-
gation (20 000g, 30 min, 4 °C). CFE (800 µL) (4 µM) was added
to the reaction mixture.
Reactions were stopped and extracted by the addition of
150 μL HCl (5 M), followed by 1 mL ethyl acetate containing
2 mM internal standard (1-dodecanol or 1-undecanol). Samples
were analysed by GC-FID (Shimadzu GC-2010) and GC-MS
(Thermo Scientific TraceGC ultra – Trace DSQ) using the
columns and temperature programs described in Table S3.†
For GC-FID analysis, fatty acids samples were methylated by
mixing equal volumes of ethyl acetate extracts (100 µL) and tri-
methylsulfonium hydroxide (TMSH) preparation.40 For GC-MS
analysis, samples were silylated. For silylation, 100 µL of the
ethyl acetate extracts from the biotransformations were dried
under N2 at room temperature. Equal amounts of pyridine and
N,O-bis(trimethylsilyl)acetamide containing 2% (w/v) tri-
methylchlorosilane were added to the dried samples, mixed
and incubated at 70 °C for 1 h and analyzed by GC-MS.
21 K. Sakai, F. Matsuzaki, L. Wise, Y. Sakai, S. Jindou,
H. Ichinose, N. Takaya, M. Kato, H. Warilshi and
M. Shimizu, Appl. Environ. Microbiol., 2018, 84, 1–15.
22 G. J. Baker, H. M. Girvan, S. Matthews, K. J. McLean,
M. Golovanova, T. N. Waltham, S. E. J. Rigby, D. R. Nelson,
R. T. Blankley and A. W. Munro, ACS Omega, 2017, 2, 4705–
4724.
Conflicts of interest
There are no conflicts to declare.
23 M. J. Maseme, A. Pennec, J. van Marwijk, D. J. Opperman
and M. S. Smit, Angew. Chem., 2020, 59, 10359–10362.
24 S. Uhlig, M. Busman, D. S. Shane, H. Rønning, F. Rise and
R. Proctor, J. Agric. Food Chem., 2012, 60, 10293–10301.
25 S. Igari, S. Mori and Y. Takikawa, Wear, 2000, 244, 180–184.
26 S. P. Arnaud, L. Wu, M. A. Wong Chang, J. W. Comerford,
T. J. Farmer, M. Schmid, F. Chang, Z. Li and M. Mascal,
Faraday Discuss., 2017, 202, 61–77.
Acknowledgements
The authors would like to thank Mr Sarel Marais for GC-MS
analysis.
27 E. M. Isin and F. P. Guengerich, Anal. Bioanal. Chem., 2008,
392, 1019–1030.
Notes and references
1 P. R. Ortiz de Montellano, Chem. Rev., 2010, 110, 932–948.
2 Y. Wang, D. Lan, R. Durrani and F. Hollmann, Curr. Opin.
Chem. Biol., 2017, 37, 1–9.
3 L. Hammerer, C. K. Winkler and W. Kroutil, Catal. Lett.,
2018, 148, 787–812.
28 K. P. Conner, C. Woods and W. M. Atkins, Arch. Biochem.
Biophys., 2011, 507, 56–65.
29 J. A. Riddick, W. B. Bunger and T. K. Sakano, Organic sol-
vents: physical properties and methods of purification, Wiley,
4th edn, 1986.
4 S. Eiben, L. Kaysser, S. Maurer, K. Kühnel, V. B. Urlacher 30 S. H. Yalkowsky, Y. He and P. Jain, Handbook of Aqueous
and R. D. Schmid, J. Biotechnol., 2006, 124, 662–669.
5 F. H. Arnold and J. C. Lewis, Chimia, 2009, 63, 309–312.
6 C. J. C. Whitehouse, S. G. Bell and L. L. Wong, Chem. Soc.
Rev., 2012, 41, 1218–1260.
7 K. G. Ravichandran, S. S. Boddupalli, C. A. Hasemann,
J. A. Peterson and J. Deisenhofer, Science, 1993, 261, 731–736.
Solubility Data: An Extensive Compilation of Aqueous
Solubility Data for Organic Compounds, CRC Press LLC,
Boca Raton, FL, 2nd edn, 2003.
31 T. Kitazume, A. Tanaka, N. Takaya, A. Nakamura,
S. Matsuyama, T. Suzuki and H. Shoun, Eur. J. Biochem.,
2002, 269, 2075–2082.
444 | Org. Biomol. Chem., 2021, 19, 439–445
This journal is © The Royal Society of Chemistry 2021