1
contains three THF molecules. Comparison of its H and 13C
NMR data with that of [Lu(CH2SiMe3)2(THF)n]+[B(CH2Si-
Me3)(C6F5)3]2 shows that the LuCH2 resonances appear at
significantly higher field (d 21.03 vs. 20.92 and d 39.8 vs.
40.4, respectively). This finding strongly suggests that the
[B(CH2SiMe3)Ph3]2 anion is loosely coordinating in the
absence of crown ethers.11
In conclusion, we have shown that in the presence of oxygen
donors, thermally robust lutetium and yttrium alkyl cations
[Ln(CH2SiMe3)2(CE)(THF)n]+ become easily available. Pre-
liminary experiments with these extremely oxygen- and
moisture-sensitive cationic lanthanide alkyl complexes indicate
that they not only react with Broensted acids such as
t
HOC6H2 Bu2-2,6-Me-4, but exhibit significant ethylene polym-
erization activity.
This work was supported by the Deutsche Forschungsge-
meinschaft and the Fonds der Chemischen Industrie.
Fig. 2 ORTEP diagram of [Lu(CH2SiMe3)2([15]-crown-5)]+[B(CH2Si-
Me3)Ph3]2·0.5(CH2Cl)2. Anion, non-coordinating solvent molecule and
hydrogen atoms omitted for clarity, thermal ellipsoids drawn at 30%
probability level. Selected bond lengths (Å): Lu–O(1) 2.359(5), Lu–O(2)
2.419(5), Lu–O(3) 2.376(5), Lu–O(4) 2.406(5), Lu–O(5) 2.421(5), Lu–
C(11) 2.364(7), Lu–C(15) 2.345(7).
Notes and references
1 C. Pellecchia, A. Grassi and A. Immirzi, J. Am. Chem. Soc., 1993, 115,
1160; R. F. Jordan, Adv. Organomet. Chem., 1991, 32, 325; W.
Kaminsky and M. Arndt, Adv. Polym. Sci., 1997, 127, 144.
2 S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen and J. H. Teuben,
Chem. Commun., 2001, 637.
3 C. J. Schaverien, Organometallics, 1992, 11, 3476.
4 L. Lee, D. J. Berg, F. W. Einstein and R. J. Batchelor, Organometallics,
1997, 16, 1819.
5 L. W. M. Lee, W. E. Piers, M. R. J. Elsegood, W. Clegg and M. Parvez,
Organometallics, 1999, 18, 2947.
Use of [18]-crown-6 makes further expansion of the
coordination sphere of the dialkyl–lanthanide complex possi-
ble.9 The NMR spectroscopic features are similar to those of the
related cations with smaller crown ethers. As Fig. 3 shows, the
lutetium center adopts a coordination polyhedron of a doubly
capped trigonal prism, where all six oxygen atoms of
[18]-crown-6 are coordinated to the eight-coordinate lutetium
ion. The two parallel trigonal planes are formed by the atoms
O(1), O(6), C(13) and O(3), O(4), C(17). The oxygen atoms
O(2) and O(5) cap the square planes formed by O(1), O(3),
C(13), C(17), and by O(4), O(6), C(13), C(17), respectively.
In the absence of crown ethers, the reaction of [Lu(CH2Si-
Me3)3(THF)2] with B(C6F5)3 in THF-d8 gives [Lu(CH2Si-
Me3)2(THF)n]+[B(CH2SiMe3)(C6F5)3]2, whose 19F NMR
spectrum exhibits meta/para chemical shift differences Dd of
2.2 ppm, consistent with solvent-separated ion pairs.10 How-
ever, reaction between [Lu(CH2SiMe3)3(THF)2] and BPh3 in
THF at ambient temperature resulted in colorless crystals of
6 R. D. Rogers and C. B. Bauer, in Comprehensive Supramolecular
Chemistry, ed. G. W. Gokel, Pergamon, Oxford, vol. 1, 1996; J.-C. G.
Bünzli, B. Klein and D. Wessner, Inorg. Chim. Acta, 1980, 44, 147; J.
D. J. Backer-Dirks, J. E. Cooke, A. M. R. Galas, J. S. Ghotra, C. J. Gray,
F. A. Hart and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 2191,
1980; J.-C. G. Bünzli, B. Klein, D. Wessner and N. W. Alcock, Inorg.
Chim. Acta, 1982, 59, 269; J.-C. G. Bünzli, B. Klein, G. Chapuis and K.
J. Schenk, Inorg. Chem., 1982, 21, 808.
7 Y. K. GunAko, P. B. Hitchcock and M. F. Lappert, Chem. Commun.,
1998, 1843.
8 M. F. Lappert and R. Pearce, Chem. Commun., 1973, 126. For the
crystal structure of the tris(THF) adduct, see: W. J. Evans, J. C. Brady
and J. W. Ziller, J. Am. Chem. Soc., 2001, 123, 7711.
9 See electronic supplementary information (ESI) for experimental and
spectroscopic
details.
[Ln(CH2SiMe3)2([12]-crown-4)(THF)]+-
[B(CH2SiMe3)Ph3]– (Ln
=
Lu, Y) and [Lu(CH2SiMe3)2-
1
[Lu(CH2SiMe3)2(THF)3]+[B(CH2SiMe3)Ph3]2. The H NMR
([18]-crown-6)(THF)]+[B(CH2SiMe3)Ph3]2 were prepared according
to the method used for the synthesis of [Lu(CH2SiMe3)2([15]-crown-
5)]+[B(CH2SiMe3)Ph3]–: A solution of Lu(CH2SiMe3)3(THF)2 (200
mg, 344 mmol) and BPh3 (83 mg, 344 mmol) in THF (1 mL) was stirred
for 20 min at 25 °C, and treated with [15]-crown-5 (75 mL, 344 mmol).
After evaporation of the solvent, pentane (3 mL) was added to give a
colorless powder which was washed with pentane (3 3 2 mL). Yield:
284 mg, 92%. 1H NMR (CD2Cl2, 25 °C), d 21.17 (s, 2 3 2 H, LuCH2),
–0.44 (s, 9 H, BCH2SiCH3), –0.07 (s, 2 3 9 H, LuCH2SiCH3), 0.18 (br,
2 H, BCH2), 3,45, 3.75 (br m, 10 H, OCH), 6.87 (t, 3JHH 7.0 Hz, 3 H,
spectrum in CD2Cl2 shows that the cation of this complex
3
4-Ph), 7.03 (t, JHH 7.1 Hz, 3 3 2 H, 3-Ph), 7.45 (br 3 3 2 H, 2-Ph).
13C{1H} NMR (CD2Cl2, 25 °C), d 2.4 (BCH2SiCH3), 4.2 (LuCH-
2SiCH3), 36.7 (LuCH2), 69.2 (OCH), 122.0 (4-Ph), 126.0 (3-Ph), 135.3
(2-Ph), 167.5 (q, 1JBC 48.3 Hz, 1-Ph). The signal of the BCH2 group was
not detected. 11B{1H} NMR (THF-d8, 25 °C), d 210.4. Anal. Calc. for
C40H68BLuO5Si3: C, 53.44; H, 7.56. Found: C, 52.56; H, 8.32.
Crystallographic data: CCDC reference number 179961, [Lu(CH-
2SiMe3)2([12]-crown-4)(THF)]+[B(CH2SiMe3)Ph3]2;
[Lu(CH2SiMe3)2([15]-crown-5)]+[B(CH2SiMe3)Ph3]2·0.5(CH2Cl)2;
179962,
179963,
Me3)Ph3]2·0.5(CH2Cl)2.
[Lu(CH2SiMe3)2([18]-crown-6)]+[B(CH2Si-
b201613n/ for crystallographic data in CIF or other electronic format.
10 19F chemical shift differences between meta and para F atoms of less
than 3 ppm are reported to be characteristic of a non-coordinating anion:
A. D. Horton, J. de With, A. J. van der Linden and H. van de Weg,
Organometallics, 1996, 15, 2672.
Fig. 3 ORTEP diagram of [Lu(CH2SiMe3)2([18]-crown-6)]+[B(CH2Si-
Me3)Ph3]2·0.5(CH2Cl)2. Anion, non-coordinating solvent molecule and
hydrogen atoms omitted for clarity, thermal ellipsoids drawn at 30%
probability level. Selected bond lengths (Å): Lu–O(1) 2.532(5), Lu–O(2)
2.422(5), Lu–O(3) 2.431(5), Lu–O(4) 2.433(5), Lu–O(5) 2.399(5), Lu–O(6)
2.524(5), Lu–C(13) 2.366(8), Lu–C(17) 2.371(8).
n
11 A strong h coordination of the aryl groups is unlikely because of the
high fluxionality. Furthermore, no reduction of the anion’s C3v
symmetry is observed on the NMR timescale.
CHEM. COMMUN., 2002, 896–897
897