N. Aramesh et al. / Inorganic Chemistry Communications 28 (2013) 37–40
39
(c) D. Sloboda-Rozner, K. Neimann, R. Neumann, Aerobic oxidation of alde-
hydes catalyzed by ε-Keggin type polyoxometalates [Mo1V2O39(μ2-OH)10H2
{XII(H2O)3}4] (X = Ni, Co, Mn and Cu) as heterogeneous catalysts, J. Mol.
Catal. A Chem. 262 (2007) 109–113;
Table 2
Aminolysis of various epoxides by aromatic amines in the presence of Fe(III) substituted
Wells–Dawson type polyoxometalatesa.
Entry Epoxide
1
ArNH2
Time (min) Yield (%)b,c
(d) E. Cadot, M.A. Pilette, J. Marrot, F. Sécheresse,
A supramolecular
tetra-Dawson polyoxothiometalate: [(α-H2P2W15O56)4{Mo2O2S2(H2O)2}4
{Mo4S4O4(OH)2(H2O)}2]28−, Angew. Chem. Int. Ed. 42 (2003) 2173–2176;
(e) K.T. Venkateswara Rao, P.S.N. Rao, P. Nagaraju, P.S. Sai Prasad, N. Lingaiah,
Room temperature selective oxidation of toluene over vanadium substituted
polyoxometalate catalysts, J. Mol. Catal. A Chem. 303 (2009) 84–89;
(f) M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, M.
Moshref Javadi, Molybdenum Schiff base-polyoxometalate hybrid compound:
a heterogeneous catalyst for alkene epoxidation with tert-BuOOH, Polyhedron
29 (2010) 648–654.
PhNH2
40
80
98
85
80
80
85
90
80
85
95
87
90
90
90
87
85
88
80
85
86
80
82
85
80
85
81
67
80
70
80
75
70
80
90
85
86
80
82
85
80
85
89
70
60
80
70
60
70
70
70
70
75
80
70
72
60
70
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2
2-NO2PhNH2
PhNHCH3
50
40
40
40
180
50
120
140
100
100
120
[2] (a) J.F. Keggin, Structure of the molecule of 12-phosphotungstic acid, Nature 131
(1933) 908–909;
2d
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 120
2-NO2 PhNH2 180
PhNHCH3
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 130
2-NO2 PhNH2 300
PhNHCH3
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 120
2-NO2 PhNH2 300
PhNHCH3
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 130
2-NO2 PhNH2 300
PhNHCH3
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 170
2-NO2PhNH2
PhNHCH3
(b) B. Dawson, The structure of the 9(18)-heteropoly anion in potassium
9(18)-tungstophosphate, K6(P2W18O62)·14H2O, Acta Crystallogr. 6 (1953)
113–126.
[3] (a) V. Mirkhani, S. Tangestaninejad, B. Yadollahi, L. Alipanah, Efficient regio- and
stereoselective ring opening of epoxides with alcohols, acetic acid and water cata-
lyzed by ammonium decatungstocerate(IV), Tetrahedron 59 (2003) 8213–8218;
(b) V. Mirkhani, S. Tangestaninejad, B. Yadollahi, L. Alipanah, Ammonium
decatungstocerate (IV): an efficient catalyst for ring opening of epoxides with
aromatic amines, Catal. Lett. 101 (2005) 93–97;
100
120
160
140
100
120
3
(c) B. Yadollahi, F.K. Esfahani, Efficient preparation of vic-diacetates from epoxides
and acetic anhydride in the presence of iron(III)-substituted polyoxometalate as
catalyst, Chem. Lett. (2007) 676–677;
(d) B. Yadollahi, H. Danafar,
A facile synthesis of 1,2-azidoalcohols by
(TBA)4PFeW11O39·3H2O-catalyzed azidolysis of epoxides with NaN3, Catal.
Lett. 113 (2007) 120–123.
140
130
130
130
130
100
[4] J.G. Smith, Synthetically useful reactions of epoxides, Synthesis (1984) 629–656.
[5] V. Alikhani, D. Beer, D. Bentley, I. Bruce, B.M. Cuenoud, R.A. Fairhurst, P. Gedeck, S.
Haberthuer, C. Hayden, D. Janus, L. Jordan, C. Lewis, K. Smithies, E. Wissler,
Long-chain formoterol analogues: an investigation into the effect of increasing
amino-substituent chain length on the β2-adrenoceptor activity, Bioorg. Med.
Chem. Lett. 14 (2004) 4705–4710.
[6] J. Cossy, D.G. Pardo, C. Dumas, O. Mirguet, I. Déchamps, T.-X. Métro, B. Burger, R.
Roudeau, J. Appenzeller, A. Cochi, Rearrangement of β-amino alcohols and applica-
tion to the synthesis of biologically active compounds, Chirality 21 (2009) 850–856.
[7] (a) E. Ruediger, A. Martel, N. Meanwell, C. Solomon, B. Turmel, Novel 3′-deoxy
analogs of the anti-HBV agent entecavir: synthesis of enantiomers from a
single chiral epoxide, Tetrahedron Lett. 45 (2004) 739–742;
4
160
130
160
120
100
120
5
(b) S. Zhu, L. Meng, Q. Zhang, L. Wei, Synthesis and evaluation of febrifugine an-
alogues as potential antimalarial agents, Bioorg. Med. Chem. Lett. 16 (2006)
1854–1858;
(c) W.J. Moore, F.A. Luzzio, Synthetic studies directed toward the liposidomycins:
preparation and reactions of serine-derived epoxides, Tetrahedron Lett. 36
(1995) 6599–6602;
(d) K.B. Lindsay, S.G. Pyne, Synthesis of (+)-(1R,2S,9S,9aR)-octahydro-1H-pyrrolo
[1,2-a]azepine-1,2,9-triol: a potential glycosidase inhibitor, Tetrahedron 60
(2004) 4173–4176.
140
175
200
200
180
190
6
[8] S. Wu, R. Takeya, M. Eto, C. Tomizawa, Insecticidal activity of optically active
1,3,2-oxazaphospholidine 2-sulfides and 1,3,2-benzodioxaphosphorin 2-sulfides, J.
Pestic. Sci. 12 (1987) 221–227.
[9] S.R. Kumar, P. Leelavathi, Phosphomolybdic acid-Al2O3: a mild, efficient, hetero-
geneous and reusable catalyst for regioselective opening of oxiranes with amines
to β-amino alcohols, J. Mol. Catal. A Chem. 266 (2007) 65–68.
[10] H. Danafar, B. Yadollahi, (TBA)4PFeW11O39·3H2O catalyzed efficient and facile
ring opening reaction of epoxides with aromatic amines, Catal. Commun. 10
(2009) 842–847.
[11] A.K. Chakraborti, S. Rudrawar, A. Kondaskar, An efficient synthesis of 2-amino alco-
hols by silica gel catalysed opening of epoxide rings by amines, Org. Biomol. Chem. 2
(2004) 1277–1280.
[12] M. Kokubo, T. Naito, S. Kobayashi, Chiral zinc(II) and copper(II)-catalyzed asym-
metric ring-opening reactions of meso-epoxides with aniline and indole deriva-
tives, Tetrahedron 66 (2010) 1111–1118.
[13] S.S. Chimni, N. Bala, V.A. Dixit, P.V. Bharatam, Thiourea catalyzed aminolysis of
epoxides under solvent free conditions. Electronic control of regioselective ring
opening, Tetrahedron 66 (2010) 3042–3049.
[14] S. Sagava, H. Abe, Y. Hase, T. Inaba, Catalytic asymmetric aminolysis of
3,5,8-trioxabicyclo[5.1.0]octane providing an optically pure 2-amino-1,3,4-butanetriol
equivalent, J. Org. Chem. 64 (1999) 4962–4965.
350
160
120
120
130
120
100
7
PhNH2
4-BrPhNH2
2-ClPhNH2
2-MePhNH2
4- MePhNH2
4-MeOPhNH2 120
2-NO2 PhNH2 230
PhNHCH3
110
a
3 mol% of catalyst was used.
All products were identified by comparison of their physical and spectral data with
b
those of authentic samples.
c
Yields refer to crude product (isolated product).
2-Amino-2-phenyl ethanol was obtained as the major product (α/β=95/5).
d
[15] S. Khaksar, A. Heydari, M. Tajbakhsh, H.R. Bijanzadeh, A facile and efficient synthesis of
β-amino alcohols using 2,2,2-trifluoroethanol as a metal-free and reusable medium,
J. Fluor. Chem. 131 (2010) 106–110.
Acknowledgments
[16] G. Sekar, V.K. Sing, An efficient method for cleavage of epoxides with aromatic
amines, J. Org. Chem. 64 (1999) 287–289.
We are grateful to University of Isfahan for the financial support of
this work.
[17] J.S. Yadav, A.R. Reddy, A.V. Narsaiah, B.V.S. Reddy, An efficient protocol for
regioselective ring opening of epoxides using samarium triflate: synthesis of pro-
pranolol, atenolol and RO363, J. Mol. Catal. A Chem. 261 (2007) 207–212.
[18] D.B.G. Williams, M. Lawton, Aluminium triflate: an efficient recyclable Lewis acid
catalyst for the aminolysis of epoxides, Tetrahedron Lett. 47 (2006) 6557–6560.
[19] A. Procopio, M. Gaspari, M. Nardi, M. Oliverio, O. Rosati, Highly efficient and versatile
chemoselective addition of amines to epoxides in water catalyzed by erbium(III)
triflate, Tetrahedron Lett. 49 (2008) 2289–2293.
References
[1] (a) M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin,
1983.;
(b) Polyoxometalates, in: C.L. Hill (Ed.), Chem. Rev., 98, 1998, pp. 1–389;