C O M M U N I C A T I O N S
agreement with the sum (2.2 Å)20 of the covalent radii of In and B
and fall within the 2.25-2.52 Å range observed in In-B cages.21
The In atoms are two-coordinate, although there are close contacts
(In‚‚‚F ) 2.54-2.72 Å) between In and one or two of the six ortho-
fluorines. The interacting C-F bonds (e.g., F(1)-C(32) ) 1.372(3)
Å and F(6)-C(38) ) 1.375(2) Å) in 1 are ca. 0.03 Å longer than
the average (ca. 1.34 Å) for the remaining C-F bonds in the
molecule. The amount of geometrical change from planarity to
tetrahedral in B(C6F5)3 has been viewed as an indicator of the
strength of donor acceptor interactions.22 The sums of the C-B-C
angles in 2 (338.89 and 339.76°) and 3 (337.79°) may be compared
to 339.8(2), 342.2(2), or 333.5° reported for η5-C5Me5AlB(C6F5)3,23
η5-C5Me5GaB(C6F5)3,24,25 or HC{(Me)C(Dipp)N}2GaB(C6F5)3,24
suggesting that 1 and InC6H3-2,6-Trip2 are similar to these in donor
strength. The C-B-C angular sum in 2 is slightly greater than
that in 3 despite the shorter In-B bond. The greater pyramidal
distortion in the B(C6F5)3 moiety in 3 further supports the important
steric effects of the para-Pri substituents. A feature of the structures
of 2 and 3 is that their In-C bonds are (ca. 0.1 Å) shorter than
those in 1 or InC6H3-2,6-Trip2. The decrease in the ligand group
13 bond distance upon complexation is common in donors of this
type.1d It is probably due to an increase in Inδ+-Cδ- polarity and
bond strength upon removal of electron density from In through
donor action. The In-C shortening in 2 and 3 contrasts with its
absence upon formation of the dimer 1, a fact which underlines
the weakness of the In-In association in this molecule.
calculations on dimers with alkyl or aryl substituents, see: (a) Allen, T.
L.; Fink, W. H.; Power, P. P. Dalton (2000) 2000, 407. (b) Takagi, N.;
Schmidt, M. N.; Nagase, S. Organometallics 2001, 20, 1646.
(13) Under anaerobic and anhydrous conditions, a solution of LiAr14 (2.5 g,
6.2 mmol) in PhMe (80 mL) was added dropwise to a rapidly stirred
slurry of InCl (0.93 g, 6.2 mmol) in PhMe (20 mL) at -78 °C. The PhMe
mixture was allowed to warm to ca. 25 °C overnight. The precipitates
were allowed to settle over ca. 5 h to afford a dark red solution which
was filtered. The volume was reduced to ca. 20 mL under reduced pressure.
Dark red crystals of (InAr)2, 1, were obtained upon overnight storage in
1
a ca. -20 °C freezer. Yield: 1.15 g, 36.2%. Mp 201-203 °C. H NMR
3
(400 MHz, C6D6, 25 °C): δ 1.10 (d, JHH ) 6.9 Hz, 12H, o-CH(CH3)2),
3
3
1.15 (d, JHH ) 6.9 Hz, 12H, o-CH(CH3)2), 3.03 (sept, JHH ) 6.9 Hz,
4H, CH(CH3)2), 7.14 (m, 6H, m-C6H3 m-Dipp), 7.22 (m, 3H, p-C6H3
p-Dipp). 13C{1H} NMR (C6D6, 100.6 MHz, 25 °C): δ 24.64 (CH(CH3)2),
25.36 (CH(CH3)2), 30.70 (CH(CH3)2), 119.77 (m-Dipp), 127.00 (p-C6H3),
141.12 (i-Dipp), 144.79 (o-C6H3), 147.32 (o-Dipp), 204.02 (i-C6H3),
m-C6H3 p-Dipp obscured by C6D6. UV/vis (hexanes): λmax nm (ꢀ mol
L-1 cm-1): 335 (17 800), 441 (18 070). 2: 1 (0.45 g, 0.44 mmol) and
B(C6F5)3 (0.45 g, 0.88 mmol) were combined in a Schlenk tube. Toluene
(40 mL) was added, and the colorless solution was stirred (ca. 1 h). The
solvent was evaporated, and the residue was redissolved in hexane (60
mL). The volume was reduced to ca. 20 mL, and the precipitate was
redissolved by warming. Cooling to ca. 25 °C over a period of ca. 3 h
afforded the product as colorless crystals. Yield: 0.48 g, 53.3%. Mp 195-
3
197 °C. 1H NMR (400 MHz, C6D6, 25 °C): δ 0.90 (d, JHH ) 6.9 Hz,
12H, o-CH(CH3)2), 1.06 (d, 3JHH ) 6.9 Hz, 12H, o-CH(CH3)2), 2.77 (sept,
3
3JHH ) 6.9 Hz, 4H, CH(CH3)2), 6.97 (d, JHH ) 8.0 Hz, 4H, m-Dipp),
7.10 (d, 2H, m-C6H3), 7.17 (m, 3JHH ) 8.0 Hz, 3H, p-C6H3 and p-Dipp).
13C{1H} NMR (C6D6, 100.6 MHz, 25 °C): δ 23.64 (CH(CH3)2), 25.90
(CH(CH3)2), 31.27 (CH(CH3)2), 124.53 (m-Dipp), 129.43 (p-Dipp), 130.75
3
(p-C6H3), 130.81 (m-C6H3), 136.84 (br, JCF ) 251 Hz, C6F5), 139.33
3
3
(br, JCF ) 251 Hz, C6F5), 139.89 (i-Dipp), 141.83 (br, JCF ) 251 Hz,
3
C6F5), 146.72 (o-C6H3), 146.93 (br, JCF ) 234 Hz, C6F5), 147.85 (o-
Dipp), 149.27 (br, 3JCF ) 234 Hz, C6F5), 170.19 (i-C6H3). 11B NMR (128
MHz, C6D6, 25 °C): δ -14.09. 19F{1H} NMR (376 MHz, C6D6, 25 °C):
3
3
δ -128.13 (d, JFF ) 25.0 Hz, o-C6F5), -154.50 (t, JFF ) 25.0 Hz,
p-C6F5), -159.55 (d, 3JFF ) 25.0 Hz, m-C6F5). 3 was obtained as colorless
crystals from InC6H3-2,6-Trip28a (0.60 g, 1.00 mmol) and B(C6F5)3 (0.51
g, 1.00 mmol). Yield: 0.45 g, 41%. Mp 130-132 °C. 1H (400 MHz,
In summary, the In-In bond in 1 is weak and corresponds to a
bond order less than unity. The compounds 1-3 illustrate the
important effects of flanking ring para-substituents of terphenyl
ligands on the structures of weakly bonded species.
3
3
C7D8, 25 °C): δ 0.94 (d, JHH ) 6.8 Hz, 12H, CH(CH3)2), 1.04 (d, JHH
) 6.8 Hz, 24H, CH(CH3)2), 2.75 (sept, 3JHH ) 6.8 Hz, 2H, p-CH(CH3)2),
3
2.84 (sept, JHH ) 6.8 Hz, 4H, o-CH(CH3)2), 7.02-7.20 (m, aromatic).
13C{1H} NMR (100 MHz, C7D8, 25 °C): δ 22.95 (CH(CH3)2), 23.52
(CH(CH3)2), 25.50 (CH(CH3)2), 30.92 (o-CH(CH3)2), 34.19 (p-CH(CH3)2),
122.26 (m-Trip), 136.27 (br, 3JCF ) 245 Hz, C6F5), 137.22 (i-Trip), 138.73
(br, 3JCF ) 245 Hz, C6F5), 141.22 (br, 3JCF ) 245 Hz, C6F5), 146.28 (br,
3JCF ) 237 Hz, C6F5), 146.69 (p-Trip), 147.07 (o-C6H3), 148.65 (br, 3JCF
) 237 Hz, C6F5), 150.52 (o-Trip), 169.53 (i-C6H3), p-C6H3 and m-C6H3
obscured by solvent. 11B NMR (128 MHz, C7D8, 25 °C): δ -13.67.
19F{1H} NMR (376 MHz, C7D8, 25 °C): δ -126.75 (d, 3JFF ) 19.9 Hz,
Acknowledgment. We are grateful to the National Science
Foundation (CHE-0096913) for financial support and the Albemarle
Corporation for a gift of B(C6F5)3.
Supporting Information Available: X-ray data (PDF and CIF)
for 1-3. This material is available free of charge via the Internet at
3
3
o-C6F5), -154.90 (t, JFF ) 19.9 Hz, p-C6F5), -159.42 (m, JFF ) 19.9
Hz, m-C6F5).
(14) Schiemenz, B.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2150.
(15) Crystal data for compounds 1, 2, and 3 at 90 K with Mo KR (λ ) 0.71073
Å) radiation: (1) a ) 20.648(4) Å, b ) 15.622(2) Å, c ) 16.294(3) Å,
orthorhombic, space group Pccn, Z ) 4, R1 ) 0.0463 for 6650 (I > 2σ(I))
data, wR2 ) 0.1251 for all (8503) data; (2) a ) 17.2344(9) Å, b )
23.2126(12) Å, c ) 22.2382(12) Å, â ) 102.738(4)°, monoclinic, space
group P21/c, Z ) 4, R1 ) 0.0401 for 20 506 (I > 2σ(I)) data, wR2 )
0.0965 for all (28 170) data; (3) a ) 12.7252(11) Å, b ) 20.684(2) Å, c
) 21.7198(18) Å, â ) 106.729(3)°, monoclinic, space group P21/c, Z )
4, R1 ) 0.0338 for 13 843 (I > 2σ(I)) data, wR2 ) 0.0984 for all (17 154)
data.
References
(1) (a) Uhl, W. Coord. Chem. ReV. 1997, 163, 1. (b) Janiak, C. Coord. Chem.
ReV. 1997, 163, 107. (c) Uhl, W. ReV. Inorg. Chem. 1998, 18, 239. (d)
Linti, G.; Schno¨ckel, H. Coord. Chem. ReV. 2000, 206-207, 285. (e)
Schno¨ckel, H.; Schnepf, A. AdV. Organomet. Chem. 2001, 47, 235.
(2) Dohmeier, C.; Robl, C.; Tacke, M.; Schno¨ckel, H. Angew. Chem., Int.
Ed. Engl. 1991, 30, 564.
(3) (a) Schumann, H.; Janiak, C.; Go¨rlitz, F.; Loebel, J.; Dietrich, A. J.
Organomet. Chem. 1989, 363, 243. (b) Schumann, H.; Pickhardt, J.;
Bo¨rner, U. Angew. Chem., Int. Ed. Engl. 1987, 26, 790.
(16) (a) Treboux, G.; Barthelat, J.-C. J. Am. Chem. Soc. 1993, 115, 4870. (b)
Himmel, H.-G.; Manceron, L.; Downs, A. J.; Pullumbi, P. Angew. Chem.,
Int. Ed. 2002, 41, 796.
(4) Loos, D.; Baum, E.; Ecker, H.; Schno¨ckel, H.; Downs, A. J. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 860.
(17) Brothers, P. J.; Hubler, K.; Hubler, V.; Noll, B. C.; Olmstead, M. M.;
Power, P. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2355.
(18) Wiberg, N.; Blank, T.; Amelunxen, K.; No¨th, H.; Schno¨ckel, H.; Baum,
E.; Purath, A.; Fenske, D. Eur. J. Inorg. Chem. 2002, 341.
(19) Schluter, R. D.; Cowley, A. H.; Atwood, D. A.; Jones, R. A.; Jones, J. L.
J. Coord. Chem. 1993, 30, 25. Uhl, W.; Graupner, R.; Layh, M.; Schu¨tz,
U. J. Organomet. Chem. 1995, 493, C1. Uhl, W.; Jantschak, W.; Saak,
M.; Kaupp, M.; Wartchow, R. Organometallics 1998, 17, 5009.
(20) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell: Ithaca,
NY, 1960; p 246.
(21) Hosmane, N.; Lu, K.-J.; Zhang, H.; Cowley, A. H.; Mardones, M. A.
Organometallics 1991, 10, 392. Hosmane, N.; Saxena, A. K.; Lu, K.-J.;
Maguire, J. A.; Zhang, H.; Wang, Y.; Thomas, J. C.; Zhu, D.; Grover, B.
R.; Gray, T. G.; Eintracht, J. F. Organometallics 1995, 14, 5104. Kim,
J.-H.; Hwang, J.-W.; Park, Y.-W.; Do, Y. Inorg. Chem. 1999, 38, 353.
(22) Jacobsen, H.; Berke, H.; Do¨ring, S.; Kehr, G.; Feher, G.; Fro¨hlich, R.;
Meyer, O. Organometallics 1999, 18, 1724.
(5) Beachley, O. T.; Churchill, M. R.; Fettinger, J. L.; Pazik, J. C.; Victoriano,
L. J. Am. Chem. Soc. 1986, 108, 4666.
(6) Higher (MR)n clusters are also obtainable, for example, (GaCH2CMe2-
a
Ph)n
, of unknown structure, or the tricapped trigonal prismatic
(GaBut)9
: (a) Beachley, O. T.; Noble, M. J.; Allendoerfer, R. D. J.
b
Organomet. Chem. 1999, 582, 32. (b) Uhl, W.; Cuypers, L.; Harms, K.;
Kaim, W.; Wanner, M.; Winter, R.; Koch, R.; Saak, W. Angew. Chem.,
Int. Ed. 2001, 40, 566.
(7) Haaland, A.; Martinsen, K.-G.; Volden, H. V.; Kaim, W.; Waldho¨r, E.;
Uhl, W.; Schutz, U. Organometallics 1996, 15, 1146.
(8) (a) Haubrich, S. T.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 2202. (b)
Niemeyer, M.; Power, P. P. Angew. Chem., Int. Ed. 1998, 37, 1277.
(9) The word significant implies bond lengths approaching those of a covalent
unbridged single bond rather than weak interactions seen in ref 3. See
also: Pyykko¨, P. Chem. ReV. 1997, 97, 597.
(10) Power, P. P. Chem. ReV. 1999, 99, 3463.
(11) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975, 97,
3402. Armstrong, D. R. Theor. Chim. Acta 1981, 60, 159. Jouany, C.;
Barthelat, J.-C.; Dandey, J. P. Chem. Phys. Lett. 1987, 136, 52. Knight,
L. B.; Kerr, K.; Miller, P. K.; Arrington, C. A. J. Phys. Chem. 1995, 99,
16842.
(23) Gorden, J. D.; Voigt, A.; Macdonald, C. L. B.; Silverman, J. S.; Cowley,
A. H. J. Am. Chem. Soc. 2000, 122, 950.
(24) Hardman, N. J.; Power, P. P.; Gorden, J. D.; Macdonald, C. L. B.; Cowley,
A. H. Chem. Commun. 2001, 1866.
(25) Jutzi, P.; Neumann, B.; Reumann, G.; Schebaum, L. O.; Stammler, H.-G.
(12) For (MH)2 (M ) Al-In) compounds, H-bridged structures are predicted
to be the most stable. For species with alkyl, aryl, or silyl substituents,
planar trans-bent structures are expected to be the most stable. For
Organometallics 2001, 20, 2854.
JA026285S
9
J. AM. CHEM. SOC. VOL. 124, NO. 29, 2002 8539