C O M M U N I C A T I O N S
Scheme 4. Asymmetric Synthesis of 3,4,5,6-Substituted
Azepanes
and/or further substitutions at positions adjacent to nitrogen in the
intact ring are available for further development.
Acknowledgment. We are grateful to the National Institutes
of Health (GM-18874) and to funds provided by the James R.
Eiszner Chair for the support of this work.
Supporting Information Available: All experimental procedures
and spectroscopic data for new compounds, and crystallographic data
of 7, 24, 36, and (R,S,S)-4 (PDF). This material is available free of
References
(1) For recent reviews which include azepane ring syntheses, see: (a) Yet,
L. Chem. Rew. 2000, 100, 2963-3007. (b) Kantorowski, E. J.; Kurth, M.
J. Tetrahedron 2000, 56, 4317-4353. (c) Maier, M. E. Angew. Chem.,
Int. Ed. 2000, 39, 2073-2077.
(2) For recent syntheses of compounds of biological interest containing
azepane rings, see: (a) Jacobi, P. A.; Lee, K. A. J. Am. Chem. Soc. 2000,
122, 4295-4303. (b) Boeckman, R. K.; Clark, T. J.; Shook, B. C. Org.
Lett. 2002, 4, 2109-2112. (c) Smith, A. B., III; Cho, Y. S.; Pettit, G. R.;
Hirschmann, R. Tetrahedron 2003, 59, 6991-7009. (d) Painter, G. F.;
Eldridge, P. J.; Falshaw, A. Bioorg. Med. Chem. 2004, 12, 225-232. (e)
Li, H.; Bleriot, Y.; Mallet, J. M.; Rodriguez-Garcia, E.; Vogel, P.; Zhang,
Y.; Sinay, P. Tetrahedron: Asymmetry 2005, 16, 313-319. (f) Wipf, P.;
Spencer, S. R. J. Am. Chem. Soc. 2005, 127, 225-235.
(3) For asymmetric azepane syntheses with one or two carbons and, in some
cases, an oxygen or nitrogen as substituents, see: (a) Lautens, M.; Fillion,
E.; Sampat, M. J. Org. Chem. 1997, 62, 7080-7081. (b) Masse, C. E.;
Morgan, A. J.; Panek, J. S. Org. Lett. 2000, 2, 2571-2573. (c) Meyers,
A. I.; Downing, S. V.; Weiser, M. J. J. Org. Chem. 2001, 66, 1413-
1419. (d) Cutri, S.; Bonin, M.; Micouin, L.; Husson, H. P. J. Org. Chem.
2003, 68, 2645-2651. (e) Sahasrabudhe, K.; Gracias, V.; Furness, K.;
Smith, B. T.; Katz, C. E.; Reddy, D. S.; Aube, J. J. Am. Chem. Soc. 2003,
125, 7914-7922. (f) Alibes, R.; Blanco, P.; Casas, E.; Closa, M.; March,
P. D.; Figueredo, M.; Font, J.; Sanfeliu, E.; Alvarez-Larena, A. J. Org.
Chem. 2005, 70, 3157-3167.
tion provided 29.8 Substitutions of 29 by selected electrophiles using
LDA as the base provided (R,S,R,S)-30-33 and (S,S,R,S)-34 in good
yields with high diastereoselectivities (Table 2). In all cases, the
C-3 and C-4 stereochemistry is assigned as trans by 1H NMR
analysis.8 Dearylation of 31 by CAN6c proceeds smoothly to give
(R,S,R,S)-35 in good yield with diastereomeric and enantiomeric
purities greater than 98:2.
Table 2. Substitutions of 29
(4) (a) Kim, D. D.; Lee, S. J.; Beak, P. J. Org. Chem. 2005, 70, 5376-5386
and references therein. For more complete reference to related heteroatom
allyllithiums, see also: (b) Whisler, M. C.; Beak, P. J. Org. Chem. 2003,
68, 1207-1215. (c) Ozlugedik, M.; Kristensen, J.; Wibbeling, B.; Fro¨lich,
R.; Hoppe, D. Eur. J. Org. Chem. 2002, 414-427.
(5) The diastereomeric ratios of (S,R,S)-4 and (S,R,S)-5 were determined to
be 96:4 and 98:2 by 1H NMR analysis, respectively.
electrophile
product
yield (%)
dr
CH3I
(R,S,R,S)-30
(R,S,R,S)-31
(R,S,R,S)-32
(R,S,R,S)-33
(S,S,R,S)-34
96
94
73
71
82
98:2
98:2
99:1
99:1
95:5
p-BrPhCH2Br
CH2dCHCH2Br
PhOC(dO)Cl
p-BrPhC(dO)Cl
To provide a route to the enantiomeric azepanes, we have taken
advantage of the lithiation-stannylation-lithiation sequence, which
provides the epimeric N-Boc-substituted allyllithium intermediate.4
The sequence leading to (R,S)-1 is shown in Scheme 5.10 The
enantiomeric ratio of (R,S)-1 was assessed to be 99:1 by determi-
nation of the diastereomeric ratio of (R,S,S)-4 after aminolysis of
(R,S)-1 with (S)-(-)-R-methylbenzylamine.7,11 Use of the sequences
in Schemes 3 and 4 with (R,S)-1 would provide the enantiomeric
azepanes.
(6) (a) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 48,
4171-4174. (b) Wanner, M. J.; Koomen, G. J. Tetrahedron Lett. 1989,
30, 2301-2304. (c) Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. J. Org.
Chem. 1982, 47, 2765-2768.
(7) The absolute configurations of 7, 24, 36, and (R,S,S)-4 were established
by X-ray crystallography structures. Crystallographic data for structures
7, 24, 36, and (R,S,S)-4 have been deposited with the Cambridge
Crystallographic Data Centre as supplementary CCDC numbers 286543,
286544, 286545, and 286546, respectively. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre via
(8) Coupling constants between H5 on C-5 and H6 on C-6 for 14, 19, 24, and
29, and between H3 on C-3 and H4 on C-4 for 30-34 are the typical
trans-coupling constants (JH-JH ) 10.4 Hz). See Supporting Information.
(9) Attempted enolization-substitution of 24 resulted in substitution at
benzylic carbon due to benzylic metalation. See: Meyers, A. I.; Kunnen,
K. B.; Still, W. C. J. Am. Chem. Soc. 1987, 109, 4405-4407.
(10) The enantiomeric ratio (er ) >99:1) of (R)-36 was directly determined
by CSP-HPLC, after crystallization.
Scheme 5. Enantioselective Synthesis of Enantiomer (R,S)-1
(11) The diastereomeric ratio of (R,S,S)-4 was determined to be 99:1 by 1H
NMR analysis.
In summary, enantioselective synthesis of both enantiomers 4,5,6-
and 3,4,5,6-substituted azepanes can be achieved from the highly
diastereoenriched and enantioenriched enecarbamates 1-3 gener-
ated by (-)-sparteine-mediated asymmetric deprotonative lithia-
tions-conjugate additions of N-Boc-N-(p-methoxyphenyl)-2,3-
substituted allylamines. Opening the ring of the lactam intermediates
JA057592B
9
J. AM. CHEM. SOC. VOL. 128, NO. 7, 2006 2179