and improved the yield of 5 (entries 3 and 4). Furthermore,
the Pd(PPh3)4/CuCl/LiCl-promoted Stille conditions devel-
oped by Corey and co-workers13 worked well in this reaction.
Thus, the reaction of 3 and 4 with Pd(PPh3)4 (20 mol %),
10 equiv of CuCl, and 12 equiv of LiCl in 1:1 THF/DMSO
at 60 °C afforded 5 in a gratifying 81% yield (entry 6).
Notably, under these conditions, the cross-coupling reaction
proceeded with complete retention of olefin stereochemistry.
Having established reliable conditions for the construction
of the sensitive triene side chain, we proceeded forward to
complete the total synthesis. Removal of the acetyl groups
of 2 followed by selective silylation of the primary alcohol
and oxidation of the residual secondary alcohol with TPAP/
NMO14 led to ketone 6 in 69% overall yield (Scheme 1).
Table 1. Stille Coupling of (Z)-Vinyl Bromide 3 and (Z)-Vinyl
Stannane 4a
cocatalystc additive
entry
Pd(0)
ligandb
(equiv)
(equiv) temp yield
1
2
3
4
5
6
Pd2(dba)3‚CHCl3 TFP
Pd2(dba)3‚CHCl3 TFP
Pd2(dba)3‚CHCl3 TFP
Pd2(dba)3‚CHCl3 TFP
Pd(PPh3)4
CuI (1.6)
CuI (10)
CuTC (10)
CuTC (10)
CuCl (10) LiCl (12) rt
CuCl (10) LiCl (12) 60 °C 81
rt
49d
60 °C 50
60 °C 69
rt
75
49d
Pd(PPh3)4
a All reactions were carried out using 3 (1 equiv) and 4 (2 equiv) in the
presence of Pd(0) catalyst (20 mol %) and ligand (80 mol %) in 1:1 v/v
THF/DMSO for 2 days. b TFP ) (2-furyl)3P. c TC ) thiophene-2-carboxy-
late. d Vinyl bromide 3 was not consumed completely, and the yield was
Scheme 1. Synthesis of Alcohol 9a
1
estimated by H NMR analysis of an inseparable mixture of 3 and 5.
by Kadota, Yamamoto, and co-workers7c is a promising
candidate for the construction of the triene side chain.
However, an initial attempt to bring about the coupling of
model substrate (Z)-vinyl bromide 38 with (Z)-vinyl stannane
49 in the presence of Pd2(dba)3‚CHCl3, (2-furyl)3P, and CuI
in THF/DMSO10 afforded the desired cross-coupled product
5 in only a modest yield (Table 1, entries 1 and 2). Therefore,
we reinvestigated the conditions to establish the optimal
conditions for the cross-coupling reaction.11 Use of copper-
(I) thiophene-2-carboxylate (CuTC)12 accelerated the reaction
(5) (a) Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Yasumoto, T. J. Am.
Chem. Soc. 1989, 112, 8929-8931. (b) Murata, M.; Legrand, A.-M.;
Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380-
4386. (c) Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.;
Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325-11326.
(d) Yasumoto, T.; Igarashi, T.; Legrand, A.-M.; Cruchet, P.; Chinain, M.;
Fujita, T.; Naoki, H. J. Am. Chem. Soc. 2000, 122, 4988-4989 and
references therein.
(6) (a) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron Lett. 2000, 41,
8371-8375. (b) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetrahedron 2001,
57, 3019-3033. (c) Fuwa, H.; Sasaki, M.; Tachibana, K. Org. Lett. 2001,
3, 3549-3552.
a Reagents and conditions: (a) NaOMe, 1:1 MeOH/CH2Cl2, rt.
(b) TBSCl, imidazole, DMF, 0 °C. (c) TPAP, NMO, 4 Å MS,
CH2Cl2, rt, 69% (three steps). (d) LiHMDS, TMSCl, Et3N, CH2Cl2,
THF, -78 °C. (e) Pd(OAc)2, acetonitrile, rt. (f) MeMgBr, toluene,
-78 °C, 94% (three steps). (g) TBSOTf, Et3N, CH2Cl2, rt. (h)
LiDBB, THF, -78 f -45 °C. (i) TBDPSCl, Et3N, DMAP, CH2Cl2,
rt, 99% (three steps). (j) TBSOTf, Et3N, CH2Cl2, rt. (k) CSA, 1:1
MeOH/CH2Cl2, 0 °C, 93% (two steps).
(7) (a) Kadota, I.; Park, C.-H.; Ohtaka, M.; Oguro, N.; Yamamoto, Y.
Tetrahedron Lett. 1998, 39, 6365-6368. (b) Kadota, I.; Kadowaki, C.;
Yoshida, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6369-6372. (c)
Kadota, I.; Ohno, A.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett.
1998, 39, 6373-6376. (d) Kadowaki, C.; Chan, P. W. H.; Kadota, I.;
Yamamoto, Y. Tetrahedron Lett. 2000, 41, 5769-5772. (e) Kadota, I.;
Takamura, H.; Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 4729-
4731. (f) Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem.
Soc. 2001, 123, 6702-6703. (g) Sakamoto, Y.; Matsuo, G.; Matsukura,
H.; Nakata, T. Org. Lett. 2001, 3, 2749-2752. (h) Kadota, I.; Park, C.-H.;
Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6195-6198. (i) Kadota,
I.; Kadowaki, C.; Takamura, H.; Yamamoto, Y. Tetrahedron Lett. 2001,
42, 6199-6202. (j) Cox, J. M.; Rainier, J. D. Org. Lett. 2001, 3, 2919-
2922. (k) Kadota, I.; Kadowaki, C.; Park, C.-H.; Yakamura, H.; Sato, K.;
Chan, P. W. H.; Thorand, S.; Yamamoto, Y. Tetrahedron 2002, 58, 1799-
1816. (l) Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem.
Soc. 2002, 124, 3562-3566. (m) Kadota, I.; Takamura, H.; Sato, K.;
Yamamoto, Y. J. Org. Chem. 2002, 67, 3494-3498.
(8) The corresponding vinyl iodide was too unstable to be used.
(9) (a) Shirakawa, E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am.
Chem. Soc. 1999, 121, 10221-10222. (b) Matsukawa, Y.; Asao, N.;
Kitahara, H.; Yamamoto, Y. Tetrahedron 1999, 55, 3779-3790.
(10) A mixed solvent system of 1:1 THF/DMSO was used in the present
study due to the low solubility of vinyl stannane 4 in DMSO.
(11) In the absence of copper(I) salt, the yield of Stille product 5 was
very low.
Treatment of 6 with LiHMDS in the presence of TMSCl
and Et3N gave the corresponding enol silyl ether, which upon
exposure to Pd(OAc)2 in CH3CN delivered enone.15 Subse-
quent Grignard reaction (MeMgBr, toluene, -78 °C)16
(12) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748-
2749.
(13) Han, X.; Stolz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121,
7600-7605.
(14) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis
1994, 639-666.
(15) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
(16) Feng, F.; Murai, A. Chem. Lett. 1992, 1587-1590.
2982
Org. Lett., Vol. 4, No. 17, 2002