ORGANIC
LETTERS
2002
Vol. 4, No. 16
2637-2640
Type 2 Intramolecular N-Acylnitroso
Diels−Alder Reaction: Stereoselective
Synthesis of Bridged Bicyclic
Oxazinolactams
Chun P. Chow, Kenneth J. Shea,* and Steven M. Sparks
Department of Chemistry, 516 Rowland Hall, UniVersity of California,
IrVine, California 92697-2025
Received April 25, 2002
ABSTRACT
The type 2 intramolecular N-acylnitroso Diels−Alder reaction has been employed for the synthesis of substituted bridged bicyclic oxazinolactams.
Upon oxidation of hydroxamic acid 6, a 3-benzylated oxazinolactam (7) was synthesized with complete diastereoselectivity. Elaboration of
cycloadduct 7 liberated a cis-3,7-disubstituted azocin-2-one (9).
Medium-ring nitrogen heterocycles occur in many natural
and unnnatural products and possess a broad spectrum of
medicinal and biological properties.1 Azocin-2-ones (eight-
membered lactams), in particular, have been used as sedatives
and anti-convulsant and anti-hypertensive agents.2 More
recently, disubstituted azocin-2-ones have been prepared as
peptide analogues to mimic the type VI â-turn conformation
of natural polypeptides.3 The preparation of eight-membered
rings by conventional cyclization methods of acyclic precur-
sors has presented considerable challenges to chemists due
to unfavorable enthalpic and entropic factors.4 Current
synthetic methodology for the preparation of this class of
compounds still remains substrate specific, and general
solutions for the regio-functionalization and stereocontrolled
synthesis have not been well established.5 Increasing interest
in eight-membered heterocycles has resulted in progress
toward synthesizing functionalized azocin-2-ones.6
We have been developing hetero type 2 intramolecular
Diels-Alder (IMDA) methodology for the synthesis of
medium ring heterocycles.7-9 Type 2 connectivity in the
IMDA cycloaddition10 provides an opportunity to control
both regio- and stereochemistry. As part of this program,
N-acylnitroso dienophiles have been employed for the
preparation of bridged bicyclic molecules.11 For example,
(5) (a) Alcaide, B.; Rodriguez-Ranera, C.; Rodriguez-Vicente, A.
Tetrahedron Lett. 2001, 42, 3081-3083. (b) Smalley, R. K. In Compre-
hensiVe Heterocyclic Chemistry; Katrytzky, A. R., Rees, C. W., Eds.;
Pergamon: Oxford, 1984; Vol. 7, Chapter 5, p 491. (c) Moore, J. A. In
ComprehensiVe Heterocyclic Chemistry; Katrytzky, A. R., Rees, C. W.,
Eds.; Pergamon: Oxford, 1984; Vol. 7, Chapter 5, p 653. (d) Anastassiou,
A. G. In ComprehensiVe Heterocyclic Chemistry; Katrytzky, A. R., Rees,
C. W., Eds.; Pergamon: Oxford, 1984; Vol. 7, Chapter 5, p 709.
(6) Homsi, F.; Rousseau, G. J. Org. Chem. 1998, 63, 5255-5258.
(7) Bear, B. R.; Shea, K. J. Org. Lett. 2001, 3, 723-726.
(8) Lease, T. G.; Shea, K. J. J. Am. Chem. Soc. 1993, 115, 2248-2260.
(9) Shea, K. J.; Lease, T. G.; Ziller, J. W. J. Am. Chem. Soc. 1990, 112,
8627-8629.
(1) For a review on medium ring nitrogen heterocycles, see: Evans, P.
A.; Holmes, A. B. Tetrahedron 1991, 47, 9131-9166.
(2) Thorsett, E. D. et al. J. Med. Chem. 1986, 29, 251-260.
(3) (a) Derrer, S.; Davies, J. E.; Holmes, A. B. J. Chem. Soc., Perkin
Trans. 1 2000, 2943-2956. (b) Derrer, S.; Davies, J. E.; Holmes, A. B. J.
Chem. Soc., Perkin Trans. 1 2000, 2957-2967.
(10) (a) Bear, B. R.; Sparks, S. M.; Shea, K. J. Angew. Chem., Int. Ed.
2001, 40, 821-849.
(11) Sparks, S. M.; Vargas, J. D.; Shea, K. J. Org. Lett. 2000, 2, 1473-
1475.
(4) (a) Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 3117-3125.
(b) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95-102.
10.1021/ol026075k CCC: $22.00 © 2002 American Chemical Society
Published on Web 07/11/2002