3500
Organometallics 2002, 21, 3500-3502
Selective Access to Electr on Don a tin g Gr ou p Su bstitu ted
(η5-cycloh exa d ien yl)Mn (CO)3 Com p lexes by Bim eta llic
Ma n ga n ese-P a lla d iu m Activa tion
Audrey Auffrant, Damien Prim,† Franc¸oise Rose-Munch,* and Eric Rose*
Laboratoire de Synthe`se Organique et Organome´tallique, UMR CNRS 7611, Universite´ Pierre
et Marie Curie, Tour 44 1er e´tage, 4 place J ussieu, BP 181, 75252 Paris Cedex 05, France
J acqueline Vaissermann
Laboratoire de Chimie Inorganique et Mate´riaux, UMR CNRS 7071, Universite´ Pierre et
Marie Curie, 4 place J ussieu, BP 42, 75252 Paris Cedex 05, France
Received April 8, 2002
Summary: Unprecedented (η5-cyclohexadienyl)Mn(CO)3
complexes bearing an electron-donating group at the end
of the π system have been selectively prepared using Pd
catalysis and primary, secondary cyclic, and acyclic
amines. This catalytic methodology has been extended
to O-, S-, and P-based derivatives. The X-ray structure
of one coupling product exhibits an unusual conforma-
tion in its η5 system.
philes and hydrides.4,5 Nucleophilic attack on the sub-
stituted arene takes place at the 6- or 5-position of the
aromatic ring, depending on the electronic effect of a
substituent.6 Electron-withdrawing substituents such as
chloride in complex 1 are known to induce mainly an
ortho addition, giving complex 2 (Scheme 1, path a).6b,7
In contrast, electron-donating groups (4; Y ) OMe, NR2)
exclusively direct meta addition, yielding complex 5
(Scheme 1, path b).3d Indeed, electronic effects preclude
ortho nucleophilic addition and thereby avoid the for-
mation of the 1-substituted η5-complex 6 (Scheme 1,
path c). In other words, no synthesis of (η5-cyclohexa-
dienyl)manganese complexes substituted with an elec-
tron-donating group at the end of the π-system, 6, had
been previously reported. We thought that a possible
strategy to prepare these complexes might be found in
the reaction of the palladium intermediate 3, arising
from the insertion of Pd(0) into the carbon-chloride
bond of (η5-chlorocyclohexadienyl)manganese complexes
2,8 with nucleophiles such as amine, alcoholate, and
thiolate in a Buchwald-Hartwig type methodology to
afford complex 6 (Scheme 1, path a).9 Therefore, in this
communication we describe an efficient synthesis of
previously unknown complexes using a palladium-
catalyzed coupling reaction. While elaborate catalytic
systems seem to be required and beneficial in Buch-
wald-Hartwig reactions, the present strategy takes
In the course of reactions involving electrophilic η6-
arene metal complexes and nucleophiles,1 η5-cyclohexa-
dienyl transition-metal complexes can be isolated or
transformed in situ into highly fuctionalized arenes or
cyclohexadienes. Those entities coordinated to chro-
mium have been intensively studied, demonstrating
their use in organic synthesis.2
In contrast, relatively few investigations have been
undertaken to exploit the potential of (η5-cyclohexadi-
enyl)manganese complexes as valuable tools for organic
synthesis.3 This is probably due to the fact that, until
recently, the only way to obtain the required (η5-
cyclohexadienyl)manganese complexes consisted of a
nucleophilic addition to the parent η6 complex. Such
reactions are known to be efficient with carbon nucleo-
* To whom correspondence should be addressed. E-mail: rose@
ccr.jussieu.fr (E.R.); rosemun@ccr.jussieu.fr (F.R.).
† Present address: Laboratoire SIRCOB, UPRESA A 8086, Univer-
site´ de Versailles, 45 avenue des Etats-Unis, 78035 Versailles Cedex,
France.
(1) (a) McQuillin, F.; Parker, D. G.; Stephenson, G. R. Transition
Metal Organometallics for Organic Synthesis; Cambridge University
Press: Cambridge, U.K., 1991; p 429. (b) Semmelhack, M. F. In
Comphrensive Organometallic Chemistry; Abel, W., Stone, F. G. A.,
Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12, Chapter
9, p 979. (c) Rose-Munch, F.; Gagliardini, V.; Renard, C.; Rose, E.
Coord. Chem. Rev. 1998, 249, 198. (d) Pike, R. D.; Sweigart, D. A.
Coord. Chem. Rev. 1999, 187, 183. (e) Astruc, D. Chimie organome´t-
allique; EDP Sciences: Les Ulis, France, 2000; p 111. (f) Rose-Munch,
F.; Rose, E. Eur. J . Inorg. Chem. 2002, 1269.
(2) See for example: (a) Semmelhack, M. F.; Hall, H. T., J r.; Farina,
R.; Yoshifuji, M.; Clark, G.; Bargar, T.; Hirotsu, K.; Clardy, J . J . Am.
Chem. Soc. 1980, 101, 3535. (b) Pape, A. R.; Krishna, K. P.; Ku¨ndig,
E. P. Chem. Rev. 2000, 100, 2917. (c) Bernardinelli, G.; Gillet, S.;
Ku¨ndig, E. P.; Ronggang, L.; Ripa, A.; Saudan, L. Synthesis 2001, 13,
2040.
(3) (a) Miles, W. H.; Brinkman, H. R. Tetrahedron Lett. 1992, 33,
589. (b) Lee, T. Y.; Kang, Y. K.; Chung, Y. K.; Pike, R. D.; Sweigart, D.
A. Inorg. Chem. Acta 1993, 214, 125. (c) Roell, B. C.; McDaniel, K. F.;
Vaughan, W. S.; Macy, T. S. Organometallics 1993, 12, 224. (d)
Pearson, A. J .; Gontcharov, A. V.; Zhu, P. Y. Tetrahedron 1997, 53,
3849 and references herein. (e) Pearson, A. J .; Vickerman, R. J .
Tetrahedron Lett. 1998, 39, 5931.
(4) McDaniel, K. F. In Comprehensive Organometallic Chemistry;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
U.K., 1995; Vol. 6, Chapter 4, p 93.
(5) Addition of heteronucleophiles usually led to equilibria, revers-
ible reactions, or reactions at the metal center; see, for example: (a)
Evans, E. J .; Kane-Maguire, L. A. P.; Sweigart, D. A. J . Organomet.
Chem. 1981, 215, C27. (b) Chung, Y. K.; Honig, E. D.; Sweigart, D. A.
J . Organomet. Chem. 1983, 256, 277. (c) Schindehutte, M.; Rooyen, P.
H. V.; Lotz, S. Organometallics 1990, 9, 293.
(6) (a) Pauson, P. L.; Segal, J . A. J . Chem. Soc., Dalton Trans. 1975,
1677. (b) Pauson, P. L.; Segal, J . A. J . Chem. Soc., Dalton Trans. 1975,
1683. (c) Stephenson, G. R.; Owen, D. A. Tetrahedron Lett. 1991, 32,
1291. (d) Rose-Munch, F.; Rose, E. Curr. Org. Chem. 1999, 3, 445.
(7) Chung, Y. K.; Williard, P. G.; Sweigart, D. A. Organometallics
1982, 1, 1053.
(8) (a) Prim, D.; Auffrant, A.; Rose-Munch, F.; Rose, E.; Vaisser-
mann, J . Organometallics 2001, 20, 1901. (b) Auffrant, A.; Prim, D.;
Rose-Munch, F.; Rose, E.; Vaissermann, J . Organometallics 2001, 20,
3214.
(9) See for example (a) Hartwig, J . F. Angew. Chem., Int. Ed. Engl.
1998, 37, 2046. (b) Buchwald, S. L. J . Organomet. Chem. 1999, 576,
125. (c) Prim, D.; Campagne, J . M.; J oseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041.
10.1021/om0202773 CCC: $22.00 © 2002 American Chemical Society
Publication on Web 07/19/2002