Direct Access to 1,4-Dihydroxyanthraquinones:
The Hauser Annulation Reexamined with
p-Quinones
Dipakranjan Mal,* Sutapa Ray, and Indrajeet Sharma
Department of Chemistry, Indian Institute of Technology,
Kharagpur 721 302, India
ReceiVed NoVember 2, 2006
FIGURE 1. Structures of select anthracyclines.
of the reinvestigation stemmed from our past experiences with
the reactivity of 3-phenylsulfanylphthalides.3
The Hauser annulation4 is a base-promoted condensation
reaction between isobenzofuranones (e.g., 8) and compounds
with polarized multiple bonds to produce quinol-annulated
products. It is general, powerful, and regiospecific and has been
successfully applied to the total synthesis of quinonoid natural
products.4f However, this reaction is reported to fail with 8b
and p-benzoquinones due to facile aromatization (cf. eq 1) of
the initial Michael adducts rendering less reactive phenoxy
anions.5
3-Phenylsulfanylphthalides (e.g. 8a) readily react with p-
benzoquinones in the presence of LiOtBu in THF to furnish
1,4-dihydroxyanthraquinones in good yields and one-pot
operations.
1,4-Dihydroxyanthraquinones are common structural sub-
units of many biologically active quinonoids namely, anthra-
cyclines,1a dynemicins,1b mitoxantrones,1c anthraquinone-
steroid hybrids,1d and naphthacenedione organic dyes.1e
Consequently, they serve as useful synthetic intermediates.1f
They are particularly important for the synthesis of anti-
tumor anthracyclines (e.g. 1 and 2) that have proved to be the
most effective drugs in the treatment of various human
tumors for the past 35 years.1a An analogue development
program has led to the discovery of second generation
anthracyclines, including idarubicin (3) (Zavedos) and epirubicin
(4) (Farmorubicin), presently available to medical oncolo-
gists. Currently, a few more synthetic analogues, e.g., 5-7, with
improved properties are undergoing clinical studies.2
With a broad objective of developing improved and practicable
syntheses of anthracyclines and other quinonoid natural products,
we reexamined the Hauser annulation with p-quinones. The idea
In contrast, the corresponding masked quinones (i.e., quinone
monoketals) undergo facile annulation to give corresponding
anthraquinones and thus serve as the key intermediates in the
synthesis of anthracyclines including idarubicin (3).6 Herein,
we report successful execution of the title reaction (Scheme 1)
for the synthesis of 1,4-dihydroxyanthraquinones.
A few years ago, we demonstrated that 3-phenylsulfa-
nylphthalides (e.g., 8a) could be excellent annulating agents, if
(3) (a) Majumdar, G.; Pal, R. K.; Murty. K. V. S. N.; Mal, D. J. Chem.
Soc., Perkin. Trans. 1 1994, 309. (b) Ghorai, S. K.; Roy, H. N.;
Bandopadhyay, M.; Mal, D. J. Chem. Res. (S) 1999, 30. (c) Hauser, F. M.;
Dorsch, W. A.; Mal, D. Org. Lett. 2002, 4, 2237.
(4) (a) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178. (b)
Hauser, F. M.; Mal, D. J. Am. Chem. Soc. 1983, 105, 5688-5690. (c)
Hauser, F. M.; Dorsch, W. A. Org. Lett. 2003, 5, 3753-3754. (d) Patra,
A.; Pahari, P.; Ray, S.; Mal, D. J. Org. Chem. 2005, 70, 9017-9020. (e)
Hassner, A.; Stumer, C. Organic Syntheses Based on Named Reactions;
Elsevier Science: UK, 2002; p 153. (f) Mal, D.; Pahari, P. Chem. ReV.
2007, 107, 1892-1918.
(5) (a) Russell, R. A.; Warrener, R. N. J. Chem. Soc., Chem. Commun.
1981, 108-110. (b) Majumdar, G.; Murty, K. V. S. N.; Mal, D. Tetrahedron
Lett. 1994, 35, 6139-6140.
(6) (a) Swenton, J. S.; Freskos, J. N.; Morrow, G. W.; Sercel, A. D.
Tetrahedron 1984, 40, 4625-4632. (b) Morrow, G. W.; Swenton, J. S.;
Filppi, J. A.; Wolgemuth, R. L. J. Org. Chem. 1987, 49, 714-719. (c)
Bennani, F.; Florent, J.-C.; Koch, M.; Monneret, C. Tetrahedron Lett. 1984,
25, 3975-3978. (d) Keay, B. A.; Rodrigo, R. Tetrahedron 1984, 40, 4597-
4607. (e) Ge, P.; Russell, R. A. Tetrahedron 1997, 53, 17477-17488. (f)
Achmatowicz, O.; Szechner, B. J. Org. Chem. 2003, 68, 2398- 2404. (g)
Ruano, J. L. G.; Paredes, C. G.; Aleman, J. ARKIVOC 2005, 253-265. (h)
Russell, R. A.; Day, A. I.; Pilley, B. A.; Leavy, P. J.; Warrener, R. N. J.
Chem. Soc., Chem. Commun. 1987, 1631-1633.
* Author to whom correspondence should be addressed. Tel: +91 3222
283318. Fax: +91 3222 255303.
(1) (a) (i) Priebe, W. Anthracycline Antibiotics: New Analogues,
Method of DeliVery, and Mechanisms of Action; ACS Symp. Ser.
No. 574; American Chemical Society: Washington, DC, 1995. (ii)
Arcamone, F. M. Biochimie 1998, 80, 201-206. (b) Smith, A. L.;
Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103-2117. (c) Faulds,
D.; Balfour, J. A.; Chrisp, P.; Langtry, H. D. Drugs 1991, 41,
400-449. (d) Riccardis, F. D.; Izzo, I.; Filippo, M. D.;
Sodano, G. Tetrahedron 1997, 53, 10871-10882. (e) Sokolyuk, N. T.;
Romanov, V. V.; Pisulina, L. P. Russ. Chem. ReV. 1993, 62, 1005-1024.
(f) (i) Kotha, S.; Stoodley, R. J. Biorg. Med. Chem. 2002, 10, 621-624.
(ii) Krohn, K.; Priyono, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 339-
340.
(2) Fokt, I.; Grynkiewicz, G.; Skibicki, P.; Przewloka, T.; Priebe, W.
Pol. J. Chem. 2005, 79, 349-359.
10.1021/jo062271j CCC: $37.00 © 2007 American Chemical Society
Published on Web 05/19/2007
J. Org. Chem. 2007, 72, 4981-4984
4981