S. Cherif et al. / Bioorg. Med. Chem. Lett. 12 (2002) 1237–1240
1239
Scheme 2. (a) H2, Pd/C, rt, 5 h; Ac2O, pyridine, 15 h, 80%; (b) H2N–NH2, DMF, 16 h, 50 ꢁC, 52%; (c) phenyl chloroformate (2.5 equiv), pyridine
(2.5 equiv), CH2Cl2, 3 h, rt, 79%; (d) 2-(2-aminoethoxy)ethanol (1.5 equiv), Et3N, CH2Cl2, 15 h rt, 74%; (e) 4-nitrophenyl chloroformate (2.5 equiv),
pyridine (2.5 equiv), CH2Cl2, 0 ꢁC to rt, 15 h, 79%.
Scheme 3. (a) H2N–NH2, AcOH, THF, DMF, 15 min, 50 ꢁC, 65%; (b) 4-nitrophenyl chloroformate, pyridine, CH2Cl2, 5 h, rt, 85%; (c) 2-(2-amino-
ethoxy)ethanol, Et3N, CH2Cl2, 15 h, rt, 90%; (d) 1,3-diaminopropanol (0.5 equiv), Et3N, 15 h, rt, 74%; (e) Mono-boc-1,3-diaminopropanol,
DMAP, THF, 15 h, 50 ꢁC, 59%; (f) 1 M HCl, EtOAc, 4.5 h, rt, 62%.
D. W.; White, G. A.; O’Riordan, C. R.; Smith, A. E. Cell
1990, 63, 8727.
4. Yang, Y.; Janich, S.; Cohn, J. A.; Wilson, J. M. Proc. Natl.
Found: 1314.4306) was conveniently achieved through
condensation of fragment 15 with fragment 24 followed
by deacylation under Zemplen conditions (37% overall
Acad. Sci. U.S.A. 1993, 90, 9480.
yield for the last two steps).
5. Loo, M. A.; Jensen, T. J.; Cui, L.; Hou, Y.; Chang, X. B.;
Riordan, J. R. EMBO J. 1998, 17, 6679.
Molecular mimic 1 was tested for its ability to inhibit
the binding of [3H] Glc1Man9GlcNAc2 to GST-fused
calnexin22 immobilized on glutathione-agarose. Com-
6. Pind, S.; Riordan, J. R.; Williams, J. M. J. Biol. Chem.
1994, 269, 12784.
7. Denning, G. M.; Anderson, M. P.; Amara, J. F.; Marshall,
pared to the Glc a (1!3) Man disaccharide, compound
1 was a less potent inhibitor, since concentrations pro-
ducing 50% inhibition were about 300 mM for com-
pound 1 and 160 mM for the disaccharide. That the
linear tetrasaccharide Glc1Man3 (A–B–C–D in Fig. 1) is
several hundred-fold more potent that the disaccharide
itself suggests that the linear disposal of the four sugar
units is more relevant for binding inhibition than the
additional terminal mannose residues that mimic the
other arms of the Glc1Man9GlcNAc2 oligoside. How-
ever, among the different hypotheses which cannot be
excluded to explain this relatively low activity, are the
nature of the linkers and scaffold and the length of the
linkers. Therefore, experiments are going on to synthe-
size other molecular mimics of the oligoside part of a
high-mannose type glycoprotein.
J.; Smith, A. E.; Welsh, M. J. Nature 1992, 358, 761.
8. Brown, C. R.; Hong-Brown, L. Q.; Welch, W. J. J. Clin.
Invest. 1997, 99, 1432.
9. Zeitlin, P. J. Clin. Invest. 1999, 103, 447.
10. Li, C.; Ramjeesingh, M.; Reyes, E.; Jensen, T.; Chang, X.;
Rommens, J. M.; Bear, C. E. Nat. Genet. 1993, 3, 312.
11. Helenius, A. Mol. Biol. Cell 1994, 358, 761.
12. Ware, F. E.; Vassilakos, A.; Peterson, P. A.; Jackson,
M. R.; Lehrman, M. A.; Williams, D. B. J. Biol. Chem. 1995,
270, 4697.
13. Spiro, R. G.; Zhu, Q.; Bhoyroo, V.; Soling, H.-D. J. Biol.
Chem. 1996, 271, 11588.
14. Cherif, S.; Clavel, J.-M.; Monneret, C. J. Carb. Chem.
1998, 17, 1203.
15. Cherif, S.; Clavel, J.-M.; Monneret, C. J. Carb. Chem.
2002, 12, 1.
16. Albert, R.; Dax, K.; Pleschko, R.; Stutz, A. E. Carbohydr.
Res. 1985, 137, 282.
17. Garegg, P. J.; Iversen, J.; Oscarson, S. Carbohydr. Res.
1976, 50, C12.
References and Notes
18. Schmidt, R. R.; Michel, J.; Roos, M. Liebigs Ann. Chem.
1984, 1343.
1. Welsh, M. J.; Smith, A. E. Cell 1993, 73, 1251.
2. Kopito, R. R. Physiol. Rev. 1999, 79, S167.
3. Cheng, S. H.; Gregory, R. J.; Marshall, J.; Paul, S.; Souza,
19. Compound 13: syrup; [a]2D2 +34.5ꢁ (c 1, chloroform); MS
1
(FAB) 779.05 (M+Na+), 794.9 (M+K+); H NMR: d 2.01,