L. Brunetti et al. / Il Farmaco 57 (2002) 479–486
485
[9] C. Mapelli, L.F. Elrod, F.L. Switzer, C.H. Stammer, Conforma-
tional properties of 2,3-methanopyroglutamic acid in peptides:
NMR and X-ray diffraction studies, Biopolymers 28 (1989)
123–128.
[10] B. Koksch, D. Ullmann, H.-D. Jakubke, N. Sewald, K. Burger,
Structure and biological activity of trifluoromethyl substituted
GnRH and TRH analogues, Peptides (1994) 323–324.
[11] I. Fukuchi, T. Asahi, K. Kawashima, Y. Kawashima, M. Yama-
mura, Y. Matsuoka, K. Kinoshita, Effects of taltirelin hydrate
(TA-0910), a novel thyrotropin-releasing hormone analog, on in
vivo dopamine release and turnover in rat brain, Arzneim.-
Forsch./Drug Res. 48 (1998) 353–359.
[12] A. Calcagni, M. Kajtar-Peredy, G. Lucente, G. Luisi, F. Pinnen,
L. Radics, D. Rossi, Nine-membered cyclodepsitripeptides con-
taining the retroisomeric sequence of ergot peptides, Int. J. Pept.
Protein Res. 42 (1993) 84–92.
[13] A. Calcagni, S. Dupre`, G. Lucente, G. Luisi, F. Pinnen, D.
Rossi, A. Spirito, Synthesis and activity of the glutathione
Although the pyroglutamic acid moiety is not consid-
ered to be involved in the stabilization of the putative
bioactive conformation of TRH [23], its cyclic structure
and conformation are important in maintaining the
right spatial location of the lactam thus stabilizing the
hydrogen bond formation in the receptor interaction
[41]. By taking into account the conformational anal-
ogy between 3 and the native molecule at the level of
the HisꢀProꢀNH2 fragment, the change in the hor-
monal potency as well as the lack of the CNS activity
should be ascribed to alterations in receptor interac-
tions connected with the specific properties of the
SO2NH group. In this context, an unfavourable electro-
static potential of sulphonamides [42] and/or the pres-
ence of the more sterically demanding tetrahedral
structure of the SO2 group as compared with the planar
amide carbonyl should play an important role.
analogue g-(
L
-(g-oxaglutamyl)-L-cysteinyl-glycine, Arch. Pharm.
Pharm. Med. Chem. 329 (1996) 498–502.
[14] A. Calcagni, G. Lucente, G. Luisi, F. Pinnen, D. Rossi, E.
Gavuzzo, Approaches to pseudopeptidic ergopeptines. Part 3.
Consequences of the incorporation of an a-azaphenylalanine
residue into the ergotamine oxa-cyclolic system, J. Chem. Soc.,
Perkin Trans 1 (1997) 2223–2227.
Acknowledgements
[15] A. Calcagni, G. Lucente, G. Luisi, F. Pinnen, D. Rossi, Novel
glutathione analogues containing the dithiol and disulfide form
of the CysꢀCys dyad, Amino acids 17 (1999) 257–265.
[16] G. Luisi, A. Calcagni, F. Pinnen, C(SO2ꢀNH) Transition state
isosteres of peptides. Synthesis of the glutathione disulfide ana-
logue [g-GluꢀC(SO2ꢀNH)ꢀCysꢀGly]2, Tetrahedron Lett. 34
(1993) 2391–2392.
Financial support from Ministero dell’Universita` e
della Ricerca Scientifica e Tecnologica (MURST, 60%)
(Italy) is gratefully acknowledged. The authors wish to
thank Professor G. Lucente for his suggestions and
helpful discussions.
[17] A. Calcagni, D. Rossi, M. Paglialunga Paradisi, G. Lucente, G.
Luisi, E. Gavuzzo, F. Mazza, G. Pochetti, M. Paci, Peptides
containing the sulfonamide junction. Synthesis, structure and
conformation of Z-TauꢀProꢀPheꢀNHiPr, Biopolymers 41 (1997)
555–567.
References
[18] A. Calcagni, P.G. Ciattini, A. Di Stefano, S. Dupre`, G. Luisi, F.
Pinnen, D. Rossi, A. Spirito, c(SO2NH) Transition state
isosteres of peptides. Synthesis and bioactivity of sulfonamido
pseudopeptides related to carnosine, Farmaco 54 (1999) 673–
677.
[19] G. Luisi, F. Pinnen, Synthesis and properties of (S)-isothiazo-
lidine-1,1-dioxide-3-carboxylic acid, a new g-sultam analogue of
pyroglutamic acid, Arch. Pharm. 326 (1993) 139–141.
[20] M. Bienert, Gy. Ko¨ller, H. Niedrich, Synthese von Thyreoliberin
(TRF), Pharmazie 32 (1977) 397–398.
[1] P.G. Board, K.A. Moore, J.E. Smith, Purification and properties
of gamma-glutamylcyclotransferase from human erythrocytes,
Biochem. J. 173 (1978) 427–431.
[2] W.H. Fischer, J. Spiess, Identification of a mammalian glu-
taminyl cyclase converting glutaminyl into pyroglutamyl pep-
tides, Proc. Natl. Acad. Sci. USA 84 (1987) 3628–3632.
[3] W.H. Busby Jr., G.E. Quackenbush, J. Humm, W.W. Young-
blood, J.S. Kizer, An enzyme(s) that converts glutaminyl-pep-
tides into pyroglutamyl-peptides. Presence in pituitary, brain,
adrenal medulla, and lymphocytes, J. Biol. Chem. 262 (1987)
8532–8536.
[4] L. Prokai, X. Ouyang, K. Prokai-Tatrai, J.W. Simpkins, N.
Bodor, Synthesis and behavioral evaluation of a chemical brain-
targeting system for a thyrotropin-releasing hormone analogue,
Eur. J. Med. Chem. 33 (1998) 879–886.
[21] A. Calcagni, E. Gavuzzo, G. Lucente, F. Mazza, F. Pinnen, G.
Pochetti, D. Rossi, Structure and conformation of peptides
containing the sulfonamide junction. II. Synthesis and conforma-
tion of cyclo[ꢀMeTauꢀPheꢀ
34 (1989) 471–479.
D
Proꢀ], Int. J. Peptide Protein Res.
[22] W.F. Erman, H.C. Kretschmar, Syntheses and facile cleavage of
five-membered ring sultams, J. Org. Chem. 26 (1961) 4841–4850.
[23] M. Montagut, B. Lemanceau, A.-M. Bellocq, Conformational
analysis of thyrotropin releasing factor by proton magnetic
resonance spectroscopy, Biopolymers 13 (1974) 2615–2629.
[24] R. Deslauriers, C. Garrigou-Lagrange, A.-M. Bellocq, I.C.P.
Smith, Carbon-13 nuclear magnetic resonance studies on thyro-
tropin-releasing factor and related peptides, FEBS Lett. 31
(1973) 59–66.
[25] B. Donzel, J. Rivier, M. Goodman, Conformational studies on
the hypothalamic thyrotropin releasing factor and related com-
pounds by 1H nuclear magnetic resonance spectroscopy, Bio-
polymers 13 (1974) 2631–2647.
[5] P.M. Cummins, B. O’Connor, Pyroglutamyl peptidase: an
overview of the three known enzymatic forms, Biochim. Bio-
phys. Acta 1429 (1998) 1–17.
[6] L. Flohe´, K. Bauer, E. Friderichs, W.A. Gu¨nzler, H.H. Hennies,
8
S. Herrling, F. Lagler, F. Otting, E. Schwertner, Biological
effects of degradation-stabilized TRH analogues, in: E.C.
Griffiths, G.W. Bennett (Eds.), Thyrotropin Releasing Hormone,
Raven Press, New York, 1983, pp. 327–340.
[7] R.F. Nutt, F.W. Holly, C. Homnick, R. Hirschmann, D.F.
Veber, B.H. Arison, Synthesis of thyrotropin-releasing hormone
analogues with selective central nervous system effects, J. Med.
Chem. 24 (1981) 692–698.
[8] G. Metcalf, Regulatory peptides as a source of new drugs—the
clinical prospects for analogues of TRH which are resistant to
metabolic degradation, Brain Res. 257 (1982) 389–408.
[26] H. Kessler, Conformation and biological activity of cyclic pep-
tides, Angew. Chem. Int. Ed. Engl. 21 (1982) 512–523.