H. Nemoto et al. / Tetrahedron Letters 46 (2005) 551–553
553
2. Nemoto, H.; Kawano, T.; Ueji, N.; Bando, M.; Kido, M.;
Suzuki, I.; Shibuya, M. Org. Lett. 2000, 2, 1015–1017.
3. Kreb, F. C.; Mikkel Jørgensen, M. J. Org. Chem. 2001, 66,
6169–6173.
4. Harmata, M.; Murray, T. J. Org. Chem. 1989, 54, 3761–
3763.
CN H
2
4
N
-
N
N
2CF CO
O
N
3
2
O
O
CN H
2
4
N
18
O
5. Harmata, M.; Barnes, C. L. Tetrahedron Lett. 1990, 31,
1825–1828.
Figure 3.
6. Harmata, M.; Barnes, C. L. J. Am. Chem. Soc. 1990, 112,
5655–5657.
We could not choose 12 as an analyte as it is insoluble in
water/methanol. Therefore, benzene 1,3-disulfonic acid
(15) and 4-methoxyphenol (16) were chosen as guest
molecules as both are sufficiently soluble in water/meth-
anol (v/v = 4/1), and the maximum UV peaktop for
these two molecules was sufficiently far away from that
of 1 (256 nm).
7. Harmata, M.; Barnes, C. L.; Karra, S. R.; Elahmad, S. J.
Am. Chem. Soc. 1994, 116, 8392–8393.
8. Fleischhauer, J.; Harmata, M.; Kahraman, M.; Koslow-
ski, A.; Welch, C. J. Tetrahedron Lett. 1997, 38, 8655–
8658.
9. Maitra, U.; DꢀSouza, L. J. J. Chem. Soc., Chem. Commun.
1994, 2793–2795.
10. DꢀSouza, L. J.; Maitra, U. J. Org. Chem. 1996, 61, 9494–
9502.
The molar ratio of both complexes of 1/15 and 1/16 were
determined to be 1:1 by Job plot.25 The binding constant
of 1/15 was determined to be 3.3 · 104 MÀ1 by the titra-
tion method.25 Similarly, the binding constant of 1/16
was determined to be 4.0 · 104 MÀ1. In contrast, a UV
spectrum of 18 (Fig. 3) at 5 · 10À5 MÀ1 in a water–
methanol (v/v = 4/1) was not altered significantly upon
titration with 15.
11. Maitra, U.; DꢀSouza, L. J.; Kumar, P. V. Supramol. Chem.
1998, 10, 97–106.
12. Jeong, K. S.; Tjivikua, T.; Muehldorf, A.; Deslong-
champs, G.; Famulok, M.; Rebek, J., Jr. J. Am. Chem.
Soc. 1991, 113, 201–209.
13. Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1990,
112, 7269–7278; Zimmerman, S. C.; VanZyl, C. M.;
Hamilton, G. S. J. Am. Chem. Soc. 1989, 111, 1373–1381.
14. Zimmerman, S. C.; Zeng, Z.; Wu, W.; Reichert, D. E. J.
Am. Chem. Soc. 1991, 113, 183–196.
Therefore, we can conclude that perhydronaphthacene
moiety is essential for the recognition property of 1.
Additionally, the ionic interaction between guanidine
moiety and either sulfonic acid or aromatic-OH could
be ignored in water/methanol. The main driving force
of recognition is strongly due to the elaborately designed
cavity27 of 1 that fits both the width and depth of the
benzene ring.
15. Zimmerman, S. C.; Wu, W.; Zeng, Z. J. Am. Chem. Soc.
1991, 113, 196–201.
16. Zimmerman, S. C. Top. Curr. Chem. 1993, 165, 71–102.
17. Zimmerman, S. C. Bioorg. Chem. Front. 1991, 2, 33–71.
18. Zimmerman, S. C.; Mrksich, M.; Baloga, M. J. Am.
Chem. Soc. 1989, 111, 8528–8530.
19. Zimmerman, S. C.; Wu, W. J. Am. Chem. Soc. 1989, 111,
8054–8055.
20. Zimmerman, S. C.; VanZyl, C. M. J. Am. Chem. Soc.
1987, 109, 7894–7896.
In conclusion, we have designed and synthesized a
water-soluble tweezer that exceeds the previous highest
record of the binding constant.3 The currently obtained
binding constants, 104–105 MÀ1, could be a significant
quantitative index for the hydrophobic interacting force
of parallelly organized aromatic plates27,28 in an aque-
ous media.
21. Muhammad, F.; Richards, N. G. J.; Guide, W. C.;
Liskamp, R.; Caufield, C.; Chang, G.; Hendrickson, T.;
Still, W. C. J. Comput. Chem. 1990, 11, 440–467.
22. In this publication, synthesis and the recognition study of
a water-soluble tweezer was reported. However, the
driving force of binding might be mainly ionic interations.
Scrimin, P.; Tecilla, P.; Tonellato, U.; Vignaga, N. J.
Chem. Soc., Chem. Commun. 1991, 449–451.
23. Brown, H. C.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88,
1464–1472.
24. Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org.
Chem. 1991, 56, 3769–3775.
25. Blanda, M. T.; Horner, J. H.; Newcomb, M. J. Org.
Chem. 1989, 54, 4626–4636.
26. The guanidine derivative 13 was prepared from piperadine
and BocN@C(NHBoc)-NH-SO2CF3.
Acknowledgments
This work was in part supported by research grants
from Faculty of Pharmaceutical Sciences, The Univer-
sity of Tokushima.
27. b-Cyclodextrin has a cone-shaped cavity. In contrast, the
tweezer 1 has a rectangular-shaped cavity that is fit for the
thickness of benzene ring. We carried out the recognition
study of 4-methoxyphenol with b-cyclodextrin in water/
methanol (4/1), and observed no recognition.29
28. Smiththrud, D. B.; Wyman, T. B.; Diederich, F. J. Am.
Chem. Soc. 1991, 113, 5410–5419; Ferguson, S. B.;
Sanfold, E. M.; Seward, E. M.; Diederich, F. J. Am.
Chem. Soc. 1991, 113, 5420–5426.
Supplementary data
IR, 1H NMR, 13C NMR, HRMS data of 1, 3, 5–10, 13,
14 and 18 are available. Supplementary data associated
with this article can be found, in the online version, at
29. The binding constant between b-Cyclodextrin and 4-
nitrophenol was reported (6 · 103 MÀ1 in D2O; no recog-
nition in methanol). Kanda, Y.; Yamamoto, Y.; Inoue,
References and notes
ˆ
Y.; Chuˆjo, R.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1987,
62, 2002–2008.
1. Chen, C.-W.; Whitelock, H. W., Jr. J. Am. Chem. Soc.
1978, 100, 4921–4922.