M. D. L. de la Torre et al. / Tetrahedron Letters 43 (2002) 4617–4620
4619
and 9c in good yields (Scheme 2). In a similar process,
5 yielded the corresponding tosylated propanol deriva-
tive 9a which after treatment with K2CO3 in refluxing
methanol afforded 9b in 60% (two steps). These com-
pounds were converted into the corresponding mal-
onates 8 and 10 by esterification with methyl malonyl
chloride (Scheme 2).
5. Wang, I. C.; Tai, L. A.; Lee, D. D.; Kanakamma, P. P.;
Shen, C. K.-F.; Luh, T.-Y.; Cheng, C. H.; Hwang, K. C.
J. Med. Chem. 1999, 42, 4614–4620.
6. Hsu, H. C.; Chiang, P. Y.; Chen, W. J.; Lee, Y. T. J.
Cardiovascular Pharmacol. 2000, 36, 423–427.
7. Dugan, L. L.; Turetsky, D. M.; Du, C.; Lobner, D.;
Wheeler, M.; Almli, C. R.; Shen, C. K.-F.; Luh, T.-Y.;
Choi, D. W.; Lin, T. S. Proc. Natl. Acad. Sci. USA 1997,
94, 9434–9439.
8. Dugan, L. L.; Lovett, E. G.; Quick, K. L.; Lotharius, J.;
Lin, T. T.; O’Malley, K. L. Parkinsonism Related Disor-
ders 2001, 7, 243–246.
9. Pietta, P.-G. J. Nat. Prod. 2000, 63, 1035–1042.
10. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Rad.
Biol. Med. 1996, 20, 933–956.
11. Beudot, C.; De Me´o, M. P.; Dauzone, D.; Elias, R.;
Laget, M.; Guiraud, M.; Balausard, G.; Du´menil, G.
Mutation Res. 1998, 417, 141–153.
12. Akama, T.; Ishida, H.; Shida, Y.; Kimura, U.; Gomi, K.;
Saito, H.; Fuse, E.; Kobayashi, S.; Yoda, N.; Kasai, M.
J. Med. Chem. 1997, 40, 1894–1900.
13. Bors, W.; Heller, W.; Michel, C.; Stettmaier, K.
Flavonoids and Polyphenols: Chemistry and Biology, In
Handbook of Antioxidants, Cadenas, E.; Packer, L.,
Eds.; Marcel Dekker: New York, 1996; p. 409
14. Flavonoids in Health and Diseases; Rice-Evans, C. A.;
Packer, L., Eds; Marcel Dekker: New York, 1998.
15. De la Torre, M. D. L.; Marcorin, G. L.; Pirri, G.; Tome´,
A. C.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron
Lett. 2002, 43, 1689–1691.
Compounds 7 and 9 were purified by flash chromato-
graphy using dichloromethane/acetone 4:1 as eluent
and were crystallized from ethanol; compounds 8 and
10 were also purified by flash chromatography but
using dichloromethane/acetone 95:5 as eluent.
Cyclopropanation reactions of C60 with malonates 8 or
10 afforded the final dyads 11 or 12 in moderate yields
(Scheme 3). Compounds 11 and 12 were separated from
the unreacted C60 by flash column chromatography
using toluene to toluene/ethyl acetate 7:3 as eluent. The
first fraction was the unchanged C60 and the next one
was the monoadduct 11 or 12. Products with higher
polarity, probably bis-adducts, were discharged. The
fullerene derivatives were fully characterized by mass
1
and H and 13C NMR spectra.18–20 In the 13C NMR
spectra the signals appearing at ca. 52 and 71.5 ppm
correspond, respectively, to the methano bridge and to
the C60-sp3 carbons. These assignments were corrobo-
rated by DEPT (135°) experiments. The signals of all
carbons from the malonyl moiety were unequivocally
assigned by HETCOR (or HSQC) and HMBC experi-
ments. When we compare the NMR spectra of a series
of derivatives (7, 8 and 11, for instance) there are no
significant variations in the signals corresponding to the
quercetin moiety.
16. Bingel, C. Chem. Ber. 1993, 126, 1957.
17. Horie, T.; Kitou, T.; Kawamura, Y.; Yamashita, K. Bull.
Chem. Soc. Jpn. 1996, 69, 1033–1041.
1
18. Selected data for compound 11: H NMR [300.13 MHz,
CDCl3, l (ppm), J (Hz)]: 7.66–7.63 (m, 2H, H-2%, H-6%),
6.98 (d, J=8.4, 1H, H-5%), 6.45 (d, J=2.2, 1H, H-8), 6.25
(d, J=2.2, 1H, H-6), 4.96 (t, J=5.7, 2H), 4.19 (t, J=5.7,
2H), 4.80 (s, 3H, CO2CH3), 3.97, 3.96, 3.86, 3.80 (4 s,
4×3H, 4×OCH3), 2.48 (qui, J=5.7, 2H); 13C NMR [75.47
MHz, CDCl3, l (ppm)]: 173.6 (C-4), 163.8 (CO2CH3),
163.7 (C-7), 163.4 (CO2R), 160.0 (C-5), 158.8 (C-9), 152.9
(C-2), 150.8 (C-4%), 148.6 (C-3%), 145.4, 145.2, 145.1,
145.0, 144.8, 144.7, 144.6, 144.5, 144.3, 144.2, 143.8,
143.0, 142.9, 142.8, 142.5, 142.1, 142.0, 141.8, 141.6,
141.2, 140.8, 140.7 (C-3), 139.5, 138.3, 129.2, 128.2, 125.3,
123.3 (C-1%), 121.6 (C-6%), 111.1 (C-2%), 110.7 (C-5%), 109.8
(C-10), 96.8 (C-6), 92.8 (C-8), 71.5 (C60-sp3), 64.9
(OCH2CH2CH2OCO), 63.9 (OCH2CH2CH2OCO), 59.9
(3-OCH3), 56.0 (7-OCH3), 55.8 (3%-OCH3 and 4%-OCH3),
54.1 (CO2CH3), 52.0 (methano bridge), 28.0
(OCH2CH2CH2OCO); HRMS (FAB) m/z calculated for
C86H27O11 (M+H)+: 1235.1553, found: 1235.1599.
The extension of this work to the synthesis of novel
fullerene derivatives having other natural antioxidant
moieties and the evaluation of the properties of the
final products is currently under way.
Acknowledgements
Thanks are due to the Fundac¸a˜o para a Cieˆncia e a
Tecnologia (Portugal) for funding the Organic Chem-
istry Research Unit and to the European Community
for funding the Research Network FMRX-CT98-0192
(TMR Program).
1
References
19. Selected data for compound 12a: H NMR [300.13 MHz,
CDCl3, l (ppm), J (Hz)]: 12.60 (s, 1H, 5-OH), 7.73 (dd,
J=8.5 and 1.9, 1H, H-6%), 7.60 (d, J=1.9, 1H, H-2%), 7.01
(d, J=8.5, 1H, H-5%), 6.43 (d, J=2.1, 1H, H-8), 6.34 (d,
J=2.1, 1H, H-6), 4.65 (t, J=6.2, 2H), 4.15 (t, J=6.2,
2H), 4.07 (s, 3H, CO2CH3), 4.04, 3.96, 3.86 (3 s, 3×3H,
3×OCH3), 2.27 (qui, J=6.2, 2H); 13C NMR [75.47 MHz,
CDCl3, l (ppm): 178.5 (C-4), 165.5 (CO2CH3), 165.5
(C-7), 164.0 (COR), 162.0 (C-5), 158.0 (C-9), 156.7 (C-2),
151.4 (C-4%), 148.7 (C-3%), 145.3, 145.2, 145.1, 145.0,
144.9, 144.8, 144.7, 144.5, 143.9, 143.8, 143.0, 142.9,
1. Da Ros, T.; Prato, M. Chem. Commun. 1999, 663–669.
2. Jensen, W.; Wilson, S. R.; Schuster, D. I. Bioorg. Med.
Chem. 1996, 4, 767–779.
3. Morton, J. R.; Negri, F.; Preston, K. F. Acc. Chem. Res.
1998, 31, 63–69.
4. Bensasson, R. V.; Brettreich, M.; Frederiksen, J.; Go¨t-
tinger, H.; Hirsch, A.; Land, E. J.; Leach, S.; McGarvey,
D. J.; Scho¨nberger, H. Free Rad. Biol. Med. 2000, 29,
26–33.