2560
D. H. Kim et al. / Bioorg. Med. Chem. 10 (2002) 2553–2560
The simulations were performed with the Discover pro-
gram, version 2.9.0(MSI, San Diego, CA, USA) on a
Silicon Graphics Indigo 2 computer, using the CVFF
force field. A dielectric constant of 1 was used in all
calculations. The energy of the system was minimized
with respect to all 3N Cartesian coordinates until the
maximum derivative of 0.1 kcal molÀ1 AÀ1 was reached.
The resulting structure was used as the starting point for
the molecular dynamics calculations. The complex was
subjected to a simulated annealing in which the complex
was heated from 0to 300K in 10ps, equilibrated for 10
ps, and then cooled to 0K in 10 ps. The selected struc-
tures were minimized using steepest descents until the
active site (possibly His-57) to form an a,b-unsaturated acid
with regeneration of the catalytic activity of the a-CT. How-
ever, this possibility is thought to be unlikely, considering the
precedents reported in the literature: Li, M.; Luo, W.; White,
E. H. Arch. Biochem. Biophys. 1995, 320, 135. (b) Kim, D. H.;
Li, Z.-H. Bioorg. Med. Lett. 1994, 4, 2297. (c) Kim, Y. J.; Li,
Z.-H.; Kim, D. H.; Hahn, J. H. Bioorg. Med. Chem. Lett.
1996, 13, 1449.
14. KM denotes the binding constant for the overall acylation
process defined by k+1/(kÀ1+ka).
15. Kitz, R.; Wilson, I. B. J. Biol. Chem. 1962, 237, 3245.
16. DelMar, E. G.; Largman, C.; Brodrick, J. W.; Giokas,
M. C. Anal. Biochem. 1979, 99, 316.
17. Dixon, M. Biochem, J. 1953, 55, 170.
18. Bernhard, S. A.; Lee, B. F.; Tashjian, Z. H. J. Mol. Biol.
1966, 18, 405.
maximum derivative was less than 5.0kcal mol À1 AÀ1
,
and then using a conjugate gradient, until the maximum
19. The a-CT catalyzed b-lactone ring cleavage reaction may
be represented by the Scheme 2, in which KM represents the
Michaelis–Menten constant (k+1/(kÀ1+ka), Ks the dissocia-
derivative was less than 0.1 kcal molÀ1 AÀ1
.
.
tion constant of the E S complex (k+1/kÀ1), ka the rate con-
Acknowledgements
stant for acylation reaction, and kd the rate constant for
deacylation reaction. The kcat denotes the second order rate
constant for the overall reaction.
The authors express their thanks to the Ministry of
Education and Human Resources for the BK21 fellow-
ship, Ministry of Science and Technology, and Korea
Science and Engineering Foundation for financial sup-
port of this work.
Scheme 2.
References and Notes
20. Fersht, A. Enzyme Structure and Mechanism, 2nd ed.; W.
H. Freeman and Co.: New York, 1985; p 201.
1. Wharton, C. W. In Comprehensive Biological Catalysis;
Sinnott, M. Ed.; Academic Press: New York, 1998; Vol. 1,
Chapter 9.
2. Bernstein, P. R.; Edwards, P. E.; Williams, J. C. Prog. Med.
Chem. 1994, 31, 59.
3. Ripka, W. C.; Vlasuk, G. R. Ann. Rep. Med. Chem. 1997,
32, 71.
4. Taylor, J. C.; Mittman, C., Eds; Pulmonary Emphysema
and Proteolysis: 1986; Academic Press: New York, 1987; p 1.
5. Warshel, A.; Naray-Szabo, G.; Sussman, F.; Hwang, J.-K.
Biochemistry 1989, 28, 3629.
6. For example: Silverman, R. B. The Organic Chemistry of
Drug Design and Drug Action, Academic Press: New York,
1992; p 172.
7. (a) Kranz, A.; Spencer, R. W.; Tam, T. F.; Thomas, E.;
Copp, L. J. J. Med. Chem. 1987, 30, 591. (b) Reed, P. E.;
Katzenellenbogen, J. A. J. Biol. Chem. 1991, 266, 13.
8. Kim, D. H.; Ryoo, J. J. Bioorg. Med. Chem. Lett. 1995, 5,
1287.
21. Li, Z.-H.; Bulychev, A.; Kotra, L. P.; Massova, I.;
Mobashery, S. J. Am. Chem. Soc. 1998, 120, 13003.
22. (a) Hein, G.; Niemann, C. J. Am. Chem. Soc. 1962, 84,
4495. (b) Lanonde, J. J.; Bergbreiter, D. E.; Wong, C.-H. J.
Org. Chem. 1988, 53, 2323. (c) Baek, D.-J.; Reed, P. E.;
Daniels, S. B.; Katzenellenbogen, J. A. Biochemistry 1990, 29,
4305.
23. Zerner, B.; Bond, R. P. M.; Bender, M. L. J. Am. Chem.
Soc. 1964, 86, 3674.
24. Blackburn, G. M.; Dodds, H. L. H. J. C. S. Perkin 2 1974,
377.
25. The b-lactone ring cleavage reaction that takes place at
the active site of a-CT is faster by three orders of magnitude
than that occurring in aqueous medium, but this may not be
unreasonable considering that reactions at the enzyme active
site might be treated as an intramolecular in nature (Fersht, A.
Enzyme Structure and Mechanism, 2nd ed.; W. H. Freeman
and Co.: New York, 1985; p 56).
26. Lall, M. S.; Karvellas, C.; Vederas, J. C. Org. Lett. 1999,
1, 803.
27. Otto, H.-H.; Schirmeister, T. Chem. Rev. 1997, 97, 133.
28. Fincham, C. I.; Higginbottom, M.; Hill, D. R.; Horwell,
D. C.; O’Toole, J. C.; Ratcliffe, G. S.; Rees, D. C.; Roberts, E.
J. Med. Chem. 1992, 35, 1472.
29. Monteil, T.; Danvoy, D.; Plaquevent, J.-C.; Duhamel, L.;
Duhamel, P.; Gros, C.; Schwartz, J.-C.; Lecomte, J.-M. Synth.
Commun. 2001, 31, 211.
30. Peet, N. P.; Lentz, N. L.; Dudley, M. W.; Ogden, A. M. L.;
McCarty, D. R.; Racke, M. M. J. Med. Chem. 1993, 36, 4015.
31. Stoll, V. S.; Eger, B. T.; Hynes, R. C.; Martichonok, V.;
Jones, J. B.; Pai, E. F. Biochemistry 1998, 37, 451.
9. Yang, H. W.; Romo, D. Tetrahedron 1999, 55, 6403.
10. Lee, J.; Lee, J.; Kim, J.; Kim, S. Y.; Chun, M. W.; Cho,
H.; Hwang, S. W.; Oh, U.; Park, Y. H.; Marquez, V. C.;
Beheshti, M.; Szabo, T.; Blumberg, P. M. Bioorg. Med. Chem.
2001, 9, 19.
11. Arnold, L.; Kalantar, T. H.; Vederas, J. C. J. Am. Chem.
Soc. 1985, 107, 7105.
12. It is highly unlikely that the intermediates detected by the
ESI-MS would be Michaelis–Menten complexes considering
the high KS values estimated for the complexes (Table 1).
13. (a) One of the referees has called our attention to the
possibility that the product generated by the C4 attack may
undergo a retro-aldol type reaction catalyzed by a base at the