3572 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 17
Letters
Stimmel, J . B.; Willson, T. M.; Zavacki, A. M.; Moore, D. D.;
Lehmann, J . M. Bile acids: natural ligands for an orphan
nuclear receptor. Science 1999, 284, 1365-1368. (c) Wang, H.;
Chen, J .; Hollister, K.; Sowers, L. C.; Forman, B. M. Endogenous
bile acids are ligands for the nuclear receptor FXR/BAR. Mol.
Cell 1999, 3, 543-553.
FXR agonists. Compound 6b is almost 2 orders of
magnitude more potent than CDCA (1), the putative
physiological FXR ligand. Moreover, the synthesis of a
series of 6R-substituted CDCA derivatives has allowed
us to delineate a key structure-activity relationship
within the steroidal skeleton. Indeed, our results point
to the existence of a discrete hydrophobic pocket in the
receptor, whose size is particularly suited to small linear
alkyl substituents. Although further experiments are
needed to fully characterize compounds 6a -d , they
appear to be useful chemical tools to probe the biological
function of FXR. Thus, 6b was active in an in vivo model
of cholestasis, and when infused to rats codosed with
LCA (2), it prevented bile flow impairment caused by
this agent. Remarkably, despite its high lipophilicity,
6b had no intrinsic cholestatic activity and did not show
any evidence of acute liver toxicity.
(4) Maloney, P. R.; Parks, D. J .; Haffner, C. D.; Fivush, A. M.;
Chandra, G.; Plunket, K. D.; Creech, K. L.; Moore, L. B.; Wilson,
J . G.; Lewis, M. C.; J ones, S. A.; Willson, T. M. Identification of
a chemical tool for the orphan nuclear receptor FXR. J . Med.
Chem. 2000, 43, 2971-2974.
(5) McKenna, N. J .; O’Malley, B. W. Combinatorial Control of Gene
Expression by Nuclear Receptors and Coregulators. Cell 2002,
108, 465-474.
(6) (a) Goodwin, B.; J ones, S. A.; Price, R. R.; Watson, M. A.; McKee,
D. D.; Moore, L. B.; Galardi, C.; Wilson, J . G.; Lewis, M. C.; Roth,
M. E.; Maloney, P. R.; Willson, T. M.; Kliewer, S. A. A regulatory
cascade of the nuclear receptors FXR, SHP-1, and LRH-1
represses bile acid biosynthesis. Mol. Cell 2000, 6, 517-526. (b)
Lu, T. T.; Makishima, M.; Repa, J . J .; Schoonjans, K.; Kerr, T.
A.; Auwerx, J .; Mangelsdorf, D. J . Molecular basis for feedback
regulation of bile acid synthesis by nuclear receptors. Mol. Cell
2000, 6, 507-515.
In conclusion, we report the identification of a potent
and selective steroidal FXR agonist, 6-ECDCA (6b).
Importantly, not only did 6-ECDCA (6b) promote bile
flow but it also protected hepatocytes against acute
necrosis caused by LCA. Thus, FXR activation not only
regulates endogenous bile acid synthesis but also acti-
vates protective pathways in hepatocytes challenged
with toxic xenobiotics. 6-ECDCA (6b ) and related
analogues may, therefore, offer a rational approach to
the treatment of cholestatic liver disease. Studies aimed
at further elucidating the potential of FXR modulators
in cholestasis as well as in other therapeutic areas are
under way.
(7) Willson, T. M.; J ones, S. A.; Moore, J . T.; Kliewer, S. A. Chemical
genomics: functional analysis of orphan nuclear receptors in the
regulation of bile acid metabolism. Med. Res. Rev. 2001, 21, 513-
522.
(8) Chawla, A.; Repa, J . J .; Evans, R. M.; Mangelsdorf, D. J . Nuclear
receptors and lipid physiology: opening the X-files. Science 2001,
294, 1866-1870.
(9) Sinal, C. J .; Tohkin, M.; Miyata, M.; Ward, J . M.; Lambert, G.;
Gonzalez, F. J . Targeted disruption of the nuclear receptor FXR/
BAR impairs bile acid and lipid homeostasis. Cell 2000, 102,
731-744.
(10) Hofmann, A. F. The continuing importance of bile acids in liver
and intestinal disease. Arch. Intern. Med. 1999, 159, 2647-2658.
(11) Beuers, U.; Boyer, J . L.; Paumgartner, G. Ursodeoxycholic acid
in cholestasis: potential mechanisms of action and therapeutic
applications. Hepatology 1998, 29, 477-482.
(12) (a) Roda, A.; Pellicciari, R.; Cerre’, C.; Polimeni, C.; Sadeghpour,
B.; Marinozzi, M.; Cantelli Forti, G.; Sapigni, E. New 6-substi-
tuted bile acids: physicochemical and biological properties of 6R-
methyl ursodeoxycholic acid and 6R-methyl-7-epicholic acid. J .
Lipid Res. 1994, 35, 2268-2279. (b) Aldini, R.; Roda, A.;
Montagnani, M.; Cerre’, C.; Pellicciari, R.; Roda, E. Relationship
between structure and intestinal absorption of bile acids with a
steroid or side-chain modification. Steroids 1996, 61, 590-597.
(13) Mosback, E. H.; Meyer, W.; Kendall, F. E. Preparation and
NaBH4 reduction of 7-ketocholanic acid. J . Am. Chem. Soc. 1954,
76, 5799-5801.
Ack n ow led gm en t. We thank Cristin Galardi and
Kelli Plunket for determination of the activity of 6b in
the cell-based reporter assays.
Refer en ces
(1) Mangelsdorf, D. J .; Evans, R. M. The RXR heterodimers and
orphan receptors. Cell 1995, 83, 841-850.
(2) Forman, B. M.; Goode, E.; Chen, J .; Oro, A. E.; Bradley, D. J .;
Perlmann, T.; Noonan, D. J .; Burka, L. T.; McMorris, T.; Lamph,
W. W.; Evans, R. M.; Weinberger, C. W. Identification of a
nuclear receptor that is activated by farnesol metabolites. Cell
1995, 81, 687-693.
(3) (a) Makishima, M.; Okamoto, A. Y.; Repa, J . J .; Tu, H.; Learned,
R. M.; Luk, A.; Hull, M. V.; Lustig, K. D.; Mangelsdorf, D. J .;
Shanz, B. Identification of a nuclear receptor for bile acids.
Science 1999, 284, 1362-1365. (b) Parks, D. J .; Blanchard, S.
G.; Bledsoe, R. K.; Chandra, G.; Consler, T. G.; Kliewer, S. A.;
(14) Selected analytical data for 6-EDCA (6b). 1H NMR (CDCl3): δ
0.67 (s, 3H, CH3-18); 0.90-0.96 (m, 9H, CH2-CH3-6, CH3-19, and
CH3-21); 2.22-2.46 (2m, 2H, CH2-23); 3.39-3.47 (m, 1H, CH-
3), 3.72 (brs, 1H, CH-7). 13C NMR (CDCl3): δ 11.65; 11.80; 18.25,
20.76; 22.23; 23.14; 23.69; 28.17; 30.53; 30.81; 30.95; 33.23; 33.90;
35.38; 35.52; 35.70; 39.60; 40.03; 41.19; 42.77; 45.19; 50.49; 55.80;
70.97; 72.38; 179.19. GC-MS methyl ester-trimethylsylyl ether
derivative of 6-ECDCA, m/z (relative intensity): 579 (M + H+,
1); 398 (base peak, 100).
J M025529G