A R T I C L E S
Sklenicka et al.
Scheme 1
those using 1,3-diketo systems but opposite of Hickmott-Stille’s
aza-annulation using acid anhydrides or chlorides.14 Thus,
mechanistically, these new reactions of vinylogous amides 1
were thought to involve a sequence that consists of a Knoev-
enagel condensation followed by a key 6π-electron electrocyclic
ring closure of 1-azatrienes 4.15 The net result of this sequential
anionic-pericyclic strategy16 is the formation of two σ-bonds
in addition to an important carbocenter adjacent to the nitrogen
atom that could be controlled stereochemically.17 It provides a
rapid construction of 1,2-dihydropyridines from simple and
accessible vinylogous amides. In this paper, we disclose full
details of this stereoselective formal [3 + 3] cycloaddition
reaction, mechanistic evidences for the first stereoselective ring
closure of 1-azatrienes, and applications of this methodology
in stereoselective constructions of cis-1-azadecalins.
Results and Discussions
(1) Stereoselectivity and Mechanism. (a) Stereoselective
Formal [3 + 3] Formal Cycloaddition Using Chiral Vinyl-
ogous Amides. Having established the synthetic feasibility in
accessing 1,2-dihydropyridines, a stereoselective variant of this
formal [3 + 3] cycloaddition using chiral vinylogous amides
such as 5 and 6 was developed to give 1,2-dihydropyridines 7
and 8, respectively, in high diastereoselectivity and good yields
when reacted with a range of different R,â-unsaturated iminiums
salts (Scheme 2).17 Given the vast number of nitrogen alkaloids
that are known to possess this important stereogenic center
adjacent to the nitrogen atom, this stereoselective reaction
represents an attractive and novel entry to natural products with
the 1-azadecalinic structural motif.2,18,19 Most significantly, this
stereoselective manifold potentially represents the first examples
Our interest in this area commenced with an investigation
involving condensations of R,â-unsaturated aldehydes with
4-hydroxy-2-pyrones and 1,3-cyclohexanediones (Scheme 1).
These reactions have been known for the almost 50 years since
Link’s first report using 4-hydroxycoumarins6 and have been
extensively examined by Moreno-Man˜as.7 However, these
reactions also suffer from problems caused by the competing
1,2- versus 1,4-additions and C- versus O-addition, thereby
providing a synthetically less useful process.7 Our initial
contribution was to recognize that instead of generating R,â-
unsaturated iminium ions in situ, the direct use of iminium salts
provided a highly efficient entry to 2H-pyrans in favor of the
head-to-head alignment (Scheme 1).8-12
(12) For other studies using 2-pyrones and 1,3-cyclohexanones, see: (a) Hua,
D. H.; Chen, Y.; Sin, H.-S.; Maroto, M. J.; Robinson, P. D.; Newell, S.
W.; Perchellet, E. M.; Ladesich, J. B.; Freeman, J. A.; Perchellet, J.-P.;
Chiang, P. K. J. Org. Chem. 1997, 62, 6888. (b) Moorhoff, C. M. Synthesis
1997, 685. (c) Jonassohn, M.; Sterner, O.; Anke, H. Tetrahedron 1996,
52, 1473. (d) Krasnaya, Z. A.; Bogdanov, V. S.; Burova, S. A.; Smirnova,
Y. V. Russ. Chem. 1995, 44, 2118. (e) Appendino, G.; Cravotto, G.;
Tagliapietra, S.; Nano, G. M.; Palmisano, G. HelV. Chim. Acta 1990, 73,
1865. (f) Schuda, P. F.; Price, W. A. J. Org. Chem. 1987, 52, 1972. (g)
Tietze, L. F.; v. Kiedrowski, G.; Berger, B. Synthesis 1982, 683. (h) de
Groot, A.; Jansen, B. J. M. Tetrahedron Lett. 1975, 16, 3407.
(13) (a) Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.; Douglas, C. J.; McLaughlin,
M. J.; Mulder, J. A.; Yao, L. J. Org. Lett. 1999, 1, 509. For other related
approaches reported recently, see: (b) Hedley, S. J.; Moran, W. J.; Prenzel,
A. H. G. P.; Price, D. A.; Harrity, J. P. A. Synlett 2001, 1596. (c) Nemes,
P.; Bala´zs, B.; To´th, G.; Scheiber, P. Synlett 1999, 222. (d) Hua, D. H.;
Chen, Y.; Sin, H.-S.; Robinson, P. D.; Meyers, C. Y.; Perchellet, E. M.;
Perchellet, J.-P.; Chiang, P. K.; Biellmann, J.-P. Acta Crystallogr. 1999,
C55, 1698. (e) Heber, D.; Berghaus, Th. J. Heterocycl. Chem. 1994, 31,
1353.
(14) (a) Hickmott, P. W.; Sheppard, G. J. Chem. Soc. C 1971, 2112. (b)
Benovsky, P.; Stephenson, G. A.; Stille, J. R. J. Am. Chem. Soc. 1998,
120, 2493. (c) Paulvannan,; K.; Stille, J. R. Tetrahedron Lett. 1993, 34,
215, 6677. (d) Paulvannan, K.; Stille, J. R. J. Org. Chem. 1992, 57, 5319.
(e) Greenhill, J. V.; Mohamed, M. J. Chem. Soc., Perkin Trans. 1 1979,
1411. (f) Chaaban, J.; Greenhill, J. V.; Rauli, M. J. Chem. Soc., Perkin
Trans. 1 1981, 3120. (g) Greenhill, J. V.; Moten, A. J. Chem. Soc., Perkin
Trans. 1 1984, 287. (h) Heber, D.; Berghaus, Th. J. Heterocycl. Chem.
1994, 31, 1353.
(15) For leading references on electrocyclic ring-closures involving 1-azatrienes,
see: (a) Maynard, D. F.; Okamura, W. H. J. Org. Chem. 1995, 60, 1763.
(b) de Lera, A. R.; Reischl, W.; Okamura, W. H. J. Am. Chem. Soc. 1989,
111, 4051. (c) Okamura, W. H.; de Lera, A. R.; Reischl, W. J. Am. Chem.
Soc. 1988, 110, 4462. For an earlier account, see: (e) Oppolzer, V. W.
Angew. Chem. 1972, 22, 1108. For a recent account similar to Okamura’s
elegant studies, see: (f) Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura,
S. J. Org. Chem. 2001, 66, 3099.
(16) For a review on synthetic methods involving sequential transformations,
see: (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32,
131. (b) Tietze, L. F. J. Heterocycl. Chem. 1990, 27, 47.
(17) Sklenicka, H. M.; Hsung, R. P.; Wei, L.-L.; McLaughlin, M. J.; Gerasyuto,
A. I.; Degen, S. J.; Mulder, J. A. Org. Lett. 2000, 2, 1161.
(18) For a recent review on preparations of piperidines, see: Laschat, S.; Dickner,
T. Synthesis 2000, 1781.
At the heel of the success in using R,â-unsaturated iminium
salts, first reactions of vinylogous amides 1 with R,â-unsaturated
iminium salts 2 were explored and found to be very efficient,
leading exclusively to 1,2-dihydropyridines 5 (Scheme 1).13 The
regiochemistry of these reactions is the same (head-to-head) as
(5) Vinamidiniums have received recent attention in syntheses of pyridines;
see: (a) Davies, I. W.; Marcoux, J.-F.; Reider, P. J. Org. Lett. 2001, 3,
209. (c) Davies, I. W.; Taylor, M.; Marcoux, J.-F.; Wu, J.; Dormer, P. G.;
Hughes, D.; Reider, P. J. J. Org. Chem. 2001, 66, 251.
(6) (a) Ikawa, M.; Stahmann, M. A.; Link, K. P. J. Am. Chem. Soc. 1944, 66,
902. (b) Seidmna, M.; Robertson, D. N.; Link, K. P. J. Am. Chem. Soc.
1950, 72, 5193. (c) Seidmna, M.; Link, K. P. J. Am. Chem. Soc. 1952, 74,
1885.
(7) de March, P.; Moreno-Man˜as, M.; Casado, J.; Pleixats, R.; Roca, J. L.;
Trius, A. J. Heterocycl. Chem. 1984, 21, 1369.
(8) Hsung, R. P.; Shen, H. C.; Douglas, C. J.; Morgan, C. D.; Degen, S. J.;
Yao, L. J. J. Org. Chem. 1999, 64, 690.
(9) The advantage of using R,â-unsaturated iminium salts has also recently
been noted; see: Cravotto, G.; Nano, G. M.; Tagliapietra, S. Synthesis 2001,
49.
(10) (a) McLaughlin, M. J.; Shen, H. C.; Hsung, R. P. Tetrahedron Lett. 2001,
42, 609. (b) Douglas C. J.; Sklenicka, H. M.; Shen, H. C.; Golding, G. M.;
Mathias, D. S.; Degen, S. J.; Morgan, C. D.; Shih, R. A.; Mueller, K. L.;
Seurer, L. M.; Johnson, E. W.; Hsung, R. P. Tetrahedron 1999, 55, 13683.
(11) For applications to natural product syntheses, see: (a) McLaughlin, M. J.;
Hsung, R. P.; Cole, K. C.; Hahn, J. M.; Wang, J. Org. Lett. 2002, 4, 2017.
(b) Wang, J.; Cole, K. P.; Wei, L. L.; Zehnder, L. R.; Hsung, R. P.
Tetrahedron Lett. 2002, 43, 3337. (c) Cole, K. P.; Hsung, R. P.; Yang,
X.-F. Tetrahedron Lett. 2002, 43, 3341. (d) Wei, L.-L.; Hsung, R. P.;
Sklenicka, H. M.; Gerasyuto, A. I. Angew. Chem., Int. Ed. 2001, 40, 1516.
(f) McLaughlin, M. J.; Hsung, R. P. J. Org. Chem. 2001, 66, 1049. (g)
Zehnder, L. R.; Hsung, R. P.; Wang, J.-S.; Golding, G. M. Angew. Chem.,
Int. Ed. 2000, 39, 3876. (h) Zehnder, L. R.; Dahl, J. W.; Hsung, R. P.
Tetrahedron Lett. 2000, 41, 1901.
9
10436 J. AM. CHEM. SOC. VOL. 124, NO. 35, 2002