A R T I C L E S
Chen et al.
molecular excited states by nanosecond pump-probe XAFS in
fluid solution.
This important achievement was made possible with the aid
of X-ray pulses from a new generation synchrotron source with
a significantly higher X-ray photon flux than was previously
available.11,18,19 A simplified time sequence of the experiment
is shown in Figure 1. A laser pulse excites the sample, and a
sextuplet X-ray pulse cluster probes the structure of the excited
state at its optimal concentration. The goal of this approach is
to take a “snapshot” of the thermally equilibrated excited-state
structure rather than to follow excited-state relaxation dynamics.
Figure 1. Experimental time sequence used in this work. The laser pump
pulse (black triangle) was overlapped with the first X-ray pulse of a sextuplet
cluster (white triangles). This time sequence allowed a “snapshot” of the
thermally equilibrated excited-state structure to be taken when its population
was optimal.
The metal-to-ligand charge-transfer (MLCT) excited states
of cuprous diimine compounds were chosen in part because of
the compelling evidence described in the literature for novel
structural reorganization following light absorption.20 These
reorganization processes are relevant to “gated” electron transfer
in proteins21 and model systems22 as well as in new classes of
molecular devices23 and solar energy conversion materials.24
Therefore, these studies not only represent a proof-of-concept
example of excited-state characterization but also provide new
insights into the dynamics for structural reorganization important
in biology and chemistry.
subject to a Jahn-Teller distortion.26 The observations of large
“Stokes-like” shifts between the absorption and photolumines-
cence and “exciplex” quenching represent strong evidence that
the excited state adopts a more Cu(II)-like geometry.20,25 The
Jahn-Teller distortion is also clearly manifest in the crystal
structures of Cu(II) bipyridine and phenanthroline compounds
that reveal distorted square pyramidal or trigonal-bipyramidal
geometries with an additional ligand derived from a solvent
molecule or counterion.25,26
Therefore, for this specific study, light absorption by Cu(I)
diimine compounds instantaneously creates a Franck-Condon
state with a Cu(II) excited state in a Cu(I) geometry. Within
our instrument response time, this state rapidly undergoes
vibrational relaxation and Jahn-Teller distortions to yield an
emissive, thermally equilibrated excited state that lives for about
100 ns, τ ) 98 ( 5 ns. The purpose of the study is to capture
the structure of this MLCT state at its optimal concentration.
In particular, this work investigates whether the MLCT transition
is a whole or partial charge transfer from Cu(I) to the ligand,
and how the resulting thermally equilibrated MLCT-state
structure differs from the corresponding Cu(I) and Cu(II)
compounds in the ground state.
The origin of the photodriven structural change can be
understood by considering light absorption by a cuprous diimine
compound, such as CuI(dmp)2+, where dmp is 2,9-dimethyl-
1,10-phenanthroline, eq 1.
CuI(dmp)2+ + hν f CuII(dmp-)(dmp)+*
(1)
The Cu(I) ground state has a d10 electronic configuration with
pseudo-tetrahedral geometry.25 Absorption of a visible photon
promotes an electron from copper to a dmp ligand, formally
generating a MLCT excited state with a Cu(II) center coordi-
nated to one reduced and one neutral dmp ligand. The Cu(II)
center in the excited state has a d9 electron configuration and is
(18) Chen, L. X.; Ja¨ger, W. J. H.; Jennings, G.; Gosztola, D. J.; Munkholm, A.;
Hessler, J. P. Science 2001, 292, 262.
(19) (a) Chen, L. X. J. Elect. Spectrosc., Relat. Phenom. 2001, 119, 161. (b)
Jennings, G.; Ja¨ger, W. J. H.; Chen, L. X. ReV. Sci. Instrum. 2002, 72,
362.
Experimental Section
Synthesis. The [CuI(dmp)2](PF6) and CuI(dmp)2(NO3) were synthe-
sized according to previously published procedures.27-30 The [CuI-
(dmp)2](BArF) was synthesized via the metathesis of [CuI(dmp)2](PF6)
with sodium tetrakis(3,5-bis(trifluoromethylphenyl))borate (Boulder
Scientific) in a 1:1 ratio in toluene. The [CuII(dmp)2(NO3)](NO3) was
synthesized following a previously published protocol.31
(20) (a) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin
Complexes; Academic Press: London, 1992; Chapter 9. (b) Scaltrito, D.
V.; Thompson, D. W.; O’Callaghan, J. A.; Meyer, G. J. Coord. Chem.
ReV. 2000, 208, 243. (c) Armaroli, N. Chem. Soc. ReV. 2001, 30, 113.
(21) (a) Lumry, R.; Eyring, H. J. Phys. Chem. 1954, 58, 110-120. (b) Vallee,
B. L.; Williams, R. J. P. Proc. Natl. Acad. Sci. U.S.A. 1968, 59, 498-505.
(c) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. ReV. 1996, 96, 2239.
(22) (a) Meagher, N. E.; Juntunen, K. L.; Salhi, C. A.; Ochrymowycz, L. A.;
Rorabacher, D. B. J. Am. Chem. Soc. 1992, 114, 10411-10420. (b)
Flanagan, S.; Dong, J.; Haller, K.; Wang, S.; Scheidt, W. R.; Scott, R. A.;
Webb, T. R.; Stanbury, D. M.; Wilson, L. J. J. Am. Chem. Soc. 1997, 119,
8857-8864.
(26) Coordination numbers greater than five are known for nonluminescent
copper bis-phenanthroline compounds with unsubstituted 1,10-phenathroline
ligands. They are not known for luminescent complexes where substituents
in the 2- and 9- positions are required.
(27) (a) Blaskie, M. W.; McMillin, D. R. Inorg. Chem. 1980, 19, 3519. (b)
McMillin, D. R.; Kirchhoff, J. R.; Goodwin, K. V. Coord. Chem. ReV.
1985, 64, 83.
(23) Collin, J. P.; Dietrich-Buchecker, C.; Gavina, P.; Jimenez-Molero, M. C.;
Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477.
(24) (a) Breddels, P. A.; Blassie, G.; Casdonte, D. J.; McMillin, D. R. Ber.
Bunsen-Ges. Phys. Chem. 1984, 88, 2. (b) Alonso-Vante, N.; Nierengarten,
J. F.; Sauvage, J. P. J. Chem. Soc., Dalton Trans. 1994, 1649. (c) Ruthkosky,
M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J. J. Am. Chem. Soc. 1997,
119, 12004.
(25) (a) Stephens, F. S. J. Chem. Soc., Dalton Trans. 1972, 1350. (b) Stephens,
F. S.; Tucker, P. A. J. Chem. Soc., Dalton Trans. 1973, 2293. (c) Kaiser,
J.; Brauer, G.; Schroder, F. A.; Taylor, I. F.; Rasmussen, S. E. J. Chem.
Soc., Dalton Trans. 1974, 1490. (d) Anderson, O. P. Inorg. Chem. 1975,
14, 730. (e) Harrison, W. D.; Hathaway, B. J.; Kennedy, D. Acta
Crystallogr., Sect. B 1979, 35, 2301. (f) Harrison, W. D.; Hathaway, B. J.
Acta Crystallogr., Sect. B 1979, 35, 2910. (g) Harrison, W. D.; Kennedy,
D. M.; Power, M.; Sheahan, R.; Hathaway, B. J. J. Chem. Soc., Dalton
Trans. 1981, 1556. (h) Tran, D.; Skelton, B. W.; White, A. H.; Laverman,
L. E.; Ford, P. C. Inorg. Chem. 1998, 37, 2505.
(28) (a) Cunningham, C. T.; Cunningham, K. L. H.; Michalec, J. F.; McMillin,
D. R. Inorg. Chem. 1999, 38, 4388. (b) Cunningham, C. T.; Moore, J. J.;
Cunningham, K. L. H.; Fanwick, P. E.; McMillin, D. R. Inorg. Chem. 2000,
39, 3638.
(29) Miller, M. T.; Ganzel, P. K.; Karpisihin, T. B. J. Am. Chem. Soc. 1999,
121, 4292.
(30) Felder, D.; Nierengarten, J. F.; Barigelletti, F.; Ventura, B.; Armaroli, N.
J. Am. Chem. Soc. 2001, 123, 6291.
(31) Riesgo, E. C.; Hu, Y.-Z.; Bouvier, F.; Thummel, R. P.; Scaltrito, D. V.;
Meyer, G. J. Inorg. Chem. 2001, 40, 3413.
(32) Antonio, M. R.; Soderholm, L.; Song, I. J. Appl. Electrochem. 1997, 27,
784.
(33) (a) Hamalainen, R.; Algren, M.; Turpeinen, U.; Raikas, T. Cryst. Struct.
Commun. 1979, 8, 75. (b) Van Meerssche, M.; Germain, G.; Declercq, J.
P. Cryst. Struct. Commun. 1981, 10, 47.
9
10862 J. AM. CHEM. SOC. VOL. 124, NO. 36, 2002