stabilizing interaction between the incipient radical and the
N lone pair,5 this stability seems to adversely influence the
reactivity of the ensuing radical reaction.4,6 It appears that
for a successful outcome to a radical cyclization reaction,
the rates of these two processes need to be fine-tuned through
highly system-dependent choices of groups Y and Z. A
literature survey seemed to point to the notion that in general,
a radical having an electron-withdrawing group attached to
the nitrogen atom is effective in both.4,6 In this context, a
carbamate7 was chosen as Z (1) in our study since it can
readily be converted to either CH3 or H. The results of our
preliminary study indicated that while the generation of
radical 2 from the sulfide precursor [1: Y ) SPh; Z ) C(d
O)OMe] is sluggish, that of the corresponding selenide8 [1:
Y ) SePh; Z ) C(dO)OMe] is in a fine balance with the
subsequent radical cyclization reaction in a number of
systems we examined.9
Scheme 1
study was the regio- and stereochemical outcome of the
cyclization of the radical intermediate 6 to be generated from
4. The transition state for the 6-exo mode of cyclization with
the radical center approaching from the opposite face of the
axially disposed OR group appeared clearly less strained over
that of the 7-endo. However, the effect of a group X on the
extent of selectivity between the two modes of cyclization
was of particular interest.
On the basis of these results, the study toward the synthesis
of (-)-sibirine10 was initiated predicated upon the retrosyn-
thesis shown in Scheme 1. Of particular significance in this
(5) (a) Griller, D.; Howard, J. A.; Marriott, P. R.; Scaiano, J. C. J. Am.
Chem. Soc. 1981, 103, 619-623. (b) Burkey, T. J.; Castelhano, A. L.;
Griller, D.; Lossing, F. P. J. Am. Chem. Soc. 1983, 105, 4701-4703. (c)
Pasto, D. J.; Krasnansky, R.; Zercher, C. J. Org. Chem. 1987, 52, 3062-
3072. (d) Coolidge, M. B.; Borden, W. T. J. Am. Chem. Soc. 1988, 110,
2298-2299.
(6) For insightful discussions on this point, see: (a) Padwa, A.;
Nimmesgern, H.; Wong, G. S. K. J. Org. Chem. 1985, 50, 5620-5627. (b)
Katritzky, A. R.; Feng, D.; Qi, M.; Aurrecoechea, J. M.; Suero, R.;
Aurrekoetxea, N. J. Org. Chem. 1999, 64, 3335-3338.
(7) For the generation of a radical R to a cyclic carbamate, see: Kano,
S.; Yuasa, K.; Asami, K.; Shibuya, S. Heterocycles 1988, 27, 1437-1447.
(8) For the use of the PhSe group for the generation of a radical R to a
lactam nitrogen, see: (a) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett.
1981, 2693-2694. (b) Bachi, M.; Frolow, F.; Hoornaert, C. J. Org. Chem.
1983, 48, 1841-1849. (c) Burnett, D. A.; Choi, J.-K.; Hart, D. J.; Tsai,
Y.-M. J. Am. Chem. Soc. 1984, 106, 8201-8209. (d) Kametani, T.; Chu,
S.-D.; Itoh, A.; Maeda, S.; Honda, T. J. Org. Chem. 1988, 53, 2683-2687.
(e) Dener, J. M.; Hart, D. J.; Ramesh, S. J. Org. Chem. 1988, 53, 6022-
6030.
The synthesis of the radical precursor 4 (R ) TBDMS)
with X ) H is summarized in Scheme 2. Thus, the
introduction of the carbamate-protected side chain amine 11
Scheme 2a
(9) Wang, Y.; Zhang, L.; Koreeda, M. To be published.
(10) For the synthesis of sibirine and other Nitraria alkaloids, see: (a)
Snider, B. B.; Cartaya-Marin, C. J. Org. Chem. 1984, 49, 1688-1691. (b)
Kozikowski, A. P.; Yuen, P.-W. J. Chem. Soc., Chem. Commun. 1985, 847-
848. (c) Hellberg, L. H.; Beeson, C.; Somanathan, R. Tetrahedron Lett.
1986, 27, 3955-3956. (d) McCloskey, P. J.; Schultz, A. G. Heterocycles
1987, 25, 437. (e) Carruthers, W.; Moses, R. C. J. Chem. Soc., Chem.
Commun. 1987, 509-510. (f) Quirion, J.-C.; Grierson, D. S.; Royer, J.;
Husson, H.-P. Tetrahedron Lett. 1988, 29, 3311-3314. (g) Tanner, D.;
Ming, H. H.; Bergdahl, M. Tetrahedron Lett. 1988, 29, 6493-6496. (h)
Wanner, M. J.; Koomen, G. J. Tetrahedron Lett. 1989, 30, 2301-2304. (i)
Tanner, D.; He, H. M. Tetrahedron 1989, 45, 4309-4316. (j) Kim, D.;
Kim, H. S.; Yoo, J. Y. Tetrahedron Lett. 1991, 32, 1577-1578. (k) Imanishi,
T.; Kurumada, T.; Maezaki, N.; Sugiyama, K.; Iwata, C. J. Chem. Soc.,
Chem. Commun. 1991, 1409-1411. (l) Belvisi, L.; Gennari, C.; Poli, G.;
Scolastico, C.; Salom, B.; Vassallo, M. Tetrahedron 1992, 48, 3945-3960.
(m) Fujii, M.; Kawaguchi, K.; Nakamura, K.; Ohno, A. Chem. Lett. 1992,
1493-1496. (n) Westermann, B.; Scharmann, H. G.; Kortmann, I.
Tetrahedron: Asymmetry 1993, 4, 2119-2122. (o) Keppens, M.; De Kimpe,
N. Synlett 1994, 285-286. (p) Keppens, M.; De Kimpe, N. J. Org. Chem.
1995, 60, 3916-3918. (q) Yamane, T.; Ogasawara, K. Synlett 1996, 925-
926. (r) Kim, D.; Choi, W. J.; Hong, J. Y.; Park, I. Y.; Kim, Y. B.
Tetrahedron Lett. 1996, 37, 1433-1434. (s) Wanner, M. J.; Koomen, G. J.
Pure Appl. Chem. 1996, 68, 2051-2056. (t) Trost, B. M.; Radinov, R.;
Grenzer, E. M. J. Am. Chem. Soc. 1997, 119, 7879-7880. (u) Franc¸ois,
D.; Lallemand, M.-C.; Selkti, M.; Tomas, A.; Kunesch, N.; Husson, H.-P.
Angew. Chem., Int. Ed. 1998, 37, 104-105. Reviews: (v) Imanishi, T.;
Iwata, C. In Studies in Natural Products Chemistry: StereoselectiVe
Synthesis; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1994; Vol 14, Part
I, pp 517-550. (w) Wanner, M. J.; Koomen, G. J. In Studies in Natural
Products Chemistry: StereoselectiVe Synthesis; Atta-ur-Rahman, Ed.;
Elsevier: Amsterdam, 1994; Vol 14, Part I, pp 731-768. (x) Husson, H.-
P.; Royer, J. Chem. Soc. ReV. 1999, 28, 383-394.
a Reagents and conditions: (a) 9-BBN (1.5 mol equiv)/THF, rt,
3 h; (b) Pd(PPh3)4 (3 mol %), NaOH/THF/H2O, reflux, 1.5 h; (c)
NaH (1.2 mol equiv)/THF, rt, 15 min; then ICH2Sn(n-Bu)3 (1.06
mol equiv), rt, 12 h (85%); (d) n-BuLi (1.2 mol equiv)/THF, -78
°C; (PhSe)2 (1.02 mol equiv)/THF, -78 °C, 0.5 h (49%); (e) (n-
Bu)3SnH (1.5 mol equiv), AIBN (cat.)/toluene, reflux, 13 h.
3330
Org. Lett., Vol. 4, No. 19, 2002