an increasing number of searches for specific RNA binders
and therapeutic agents have been conducted by rational
design and/or library synthesis.9,10 Most recently, Wong and
co-workers synthesized novel neamine dimers that bind to
16S RNA with high affinity and exhibited significantly
increased antibiotic activity.9a
by multiple byproducts when translated to non-milligram
scales (Scheme 1).
Scheme 1. Degradation of 4 to CD Ring Fragmenta
In a search for new antibacterial agents that target bacterial
ribosomal RNAs, we have initiated a program to synthesize
aminosugar mimetics with simpler structure and improved
biological properties.11 Although studies by Wong and co-
workers have suggested that the CD ring contributes
significantly to the binding affinity (KD ) 0.019 µM for 1
and KD ) 7.8 µM for 2) and specificity (1 is 5-fold more
specific than 2) of neomycin for the target RNA,9e most
previous studies on neomycin B analogues have maintained
the core AB ring structure and eliminated or modified the C
and/or D rings.9b,c,e,10b,e,h To address the relative contributions
to neomycin activity made by the various ring components,
we became interested in the synthesis of neomycin analogues
having the CD ring structure maintained and a variety of
carbohydrate and non-carbohydrate moieties substituted for
the A and/or B rings. Although many studies on neomycin
B and related aminosugars have been reported in the
literature,12 no practical preparation of the neomycin B CD
ring has been documented. We have described the prepara-
tion of the CD fragment from neomycin B with hydrochloric
acid by modifying the literature procedure.13 Unfortunately,
the yield for the CD ring was variable and often accompanied
(4) Stage, T. K.; Hertel, K. J.; Uhlenbeck, O. C. RNA 1995, 1, 95.
(5) (a) Rogers, J.; Chang, A. H.; Von Ahsen, U.; Schroeder, R.; Davies,
J. J. Mol. Biol. 1996, 259, 916. (b) Chia, J.-S.; Wu, H.-L.; Wang, H.-W.;
Chen, D.-S.; Chen, P.-J. J. Biomed. Sci. 1997, 4, 208.
(6) (a) Moazed, D.; Noller, H. F. Nature 1987, 327, 389. (b) Purohit, P.;
Stem, S. Nature 1994, 370, 650. (c) Formy, D.; Recht, M. I.; Blanchard, S.
C.; Puglisi, J. D. Science 1996, 1367.
(7) (a) Griffey, R. H.; Greig, M. J. H.; An, H.; Sasmor, S.; Manalili, S.
J. Am. Chem. Soc. 1999, 121, 474. (b) Griffey, R. H.; Hofstadler, S. A.;
Sannes-Lowery, K. A.; Ecker, S. T.; Crooke, S. T. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 10129.
a Reagents and conditions: (a) TfN3 (10 equiv), CuSO4, Et3N,
MeOH, H2O; (b) Ac2O (50 equiv), Py, DMAP (cat.), 82% from 1;
(c) 1.0 N HCl, MeOH-dioxane, reflux; (d) TolSH (1.1 equiv),
BF3‚OEt2 (3.0 equiv), 25 °C, 15 h, 6, 82%; (e) TolSH (2.0 equiv),
BF3‚OEt2 (3.0 equiv), 25 °C, 15 h, 5, 88%; 6, 45%; 8, 33%; 9,
∼5%.
(8) Hendrix, M.; Priestley, E. S.; Joyce, G. F.; Wong, C.-H. J. Am. Chem.
Soc. 1997, 119, 3641.
We report herein a new protocol for the degradation of
neomycin B that allows us to efficiently and reproducibly
access the CD and D ring fragments of neomycin B in
quantity. Furthermore, this protocol conveniently provides
the CD and D rings as thioglycosides with proper protections
for the amino and hydroxy groups in place, making them
amenable to subsequent glycosylations.
(9) (a) Sucheck, S. J.; Wong, A. L.; Koeller, K. M.; Boehr, D. D.; Draker,
K.; Sears, P.; Wright, G. D.; Wong, C.-H. J. Am. Chem. Soc. 2000, 122,
5230. (b) Sucheck, S. J.; Greenberg, W. A.; Tolbert, T. J.; Wong, C.-H.
Angew. Chem., Int. Ed. 2000, 39, 1080. (c) Greenberg, W. A.; Priestley, E.
S.; Sears, P. S.; Alper, P. B.; Rosenbohm, C.; Hendrix, M.; Hung, S. C.;
Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 6527. (d) Wong, C.-H.; Hendrix,
M.; Manning, D. D.; Rosenbohm, C.; Greenberg, W. A. J. Am. Chem. Soc.
1998, 120, 8319. (e) Alper, P. B.; Hendrix, M.; Sears, P.; Wong, C.-H. J.
Am. Chem. Soc. 1998, 120, 1965.
Initially, perazidoperacetylneomycin (4) was chosen as our
starting material for the study of cleavage conditions.
Compound 4 can conveniently be prepared from inexpensive
neomycin B by azido transfer followed by acetylation
(Scheme 1).9c Under acidic conditions (1.0 N HCl-MeOH-
dioxane, Table 1), 4 was decomposed slowly at room
temperature, giving neither the desired CD ring product 5,
AB ring product 6 nor their related de-acylated products
according to LC-MS analysis. Similar results were obtained
by employing sulfuric acid. We then turned our attention to
Lewis acid mediated degradation conditions. Treatment of
4 with 1,3-propanedithiol and SnCl4 in methylene chloride
resulted in slow decomposition of the starting material at
-78 °C. Under similar conditions with different Lewis acids
(10) (a) Luedtke, N. W.; Baker, T. J.; Goodman, M.; Tor, Y. J. Am.
Chem. Soc. 2000, 122, 12035. (b) Kirk, S. R.; Luedtke, N. W.; Tor, Y. J.
Am. Chem. Soc. 2000, 122, 980. (c) Michael, K.; Wang, H.; Tor, Y. Bioorg.
Med. Chem. 1999, 7, 1361. (d) Wang, H.; Tor, Y. Angew. Chem., Int. Ed.
Engl. 1998, 37, 109. (e) Wang, H.; Tor, Y. Bioorg. Med. Chem. Lett. 1997,
7, 1951. (f) Tok, J. B.-H.; Fenker, J. Bioog. Med. Chem. Lett. 2001, 11,
2987. (g) Hamasaki, K.; Ueno, A. Bioog. Med. Chem. Lett. 2001, 11, 591.
(h) Hanessian, S.; Tremblay, M.; Kornienko, A.; Moitessier, N. Tetrahedron
2001, 57, 3255. (i) Hamasaki, K.; Woo, M.-W.; Ueno, A. Tetrahedron Lett.
2000, 41, 8327.
(11) Ding, D.; Hofstadler, S. A.; Swayze, E. E.; Griffey, R. H. Org.
Lett. 2001, 3, 1621.
(12) (a) Umezawa, S.; Tsuchiya, T. In Aminoglycoside Antibiotics;
Humezawa, H., Hooper, I. R., Eds.; Springer-Verlag: Berlin, Heidelberg,
New York, 1982; pp 37-110. (b) See refs 9-11 and references therein.
(13) (a) Ding, Y.; Swayze, E. E.; Hofstadler, S. A.; Griffey, R. H.
Tetrahedron Lett. 2000, 41, 4049. (b) Rinehart, K. L., Jr. The Neomycins
and Related Antibiotics; John Wiley and Sons: New York, 1964; pp 93-
97.
3456
Org. Lett., Vol. 4, No. 20, 2002