K.-Y. Kay et al. / Tetrahedron Letters 43 (2002) 5053–5056
5055
The data of differential scanning calorimetry (DSC) for
1, 2 and 3 showed high thermal stability. Glass transi-
tion temperatures (Tg) of 1, 2 and 3 were found to be
370, 358 and 348 K, respectively. These values were 45,
33 and 23 K higher than the value 325 K of the
previously reported Hawker’s benzylether dendrimer
with fullerene core,17 which is also 13 K higher than the
Tg value (312 K36) of the corresponding dendrimer
without fullerene core indicating the strong influence
that azobenzene and fullerene portions have on the
overall properties of the hybrid molecules 1, 2 and 3.37
However, the Tgs of [G1], [G2] and [G3] dendrimers
decrease with increasing generations.
16. Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J.; Wudl,
F.; Srdanov, G.; Shi, S.; Li, C.; Kao, M. J. Am. Chem.
Soc. 1993, 115, 9836–9837.
17. Hawker, C. J.; Wooley, K. L.; Fre´chet, J. M. J. J. Chem.
Soc., Chem. Commun. 1994, 925–926.
18. Catalano, V. J.; Parodi, N. Inorg. Chem. 1997, 36, 537–
541.
19. Nierengarten, J.-F.; Schall, C.; Nicoud, J.-F.; Heinrich,
B.; Guillon, D. Tetrahedron Lett. 1998, 39, 5747–5750.
20. Nierengarten, J.-F.; Felder, D.; Nicoud, J.-F. Tetrahedron
Lett. 1999, 40, 269–272.
21. Felder, D.; Gallani, J.-L.; Guillon, D.; Heinrich, B.;
Nicoud, J.-F.; Nierengarten, J.-F. Angew. Chem., Int. Ed.
2000, 39, 201–204.
22. Djojo, F.; Ravanell, E.; Vostrowsky, O.; Hirsh, A. Eur. J.
Polarized optical microscopy suggests that the films
derived from 1, 2 and 3 are uniform and isotropic
(nonbirefringent), showing no mesophase upon heating
or cooling between 30 and 270°C. Therefore, films can
be readily fabricated by melt processing. This study has
yielded robust, nonscattering glasses which appear
indefinitely stable with respect to crystallization. These
easily processable solid solutions are suitable materials
for further optical studies, which are now under
investigation.
Org. Chem. 2000, 1051–1059.
23. Schwell, M.; Wachter, N. K.; Rice, J. H.; Galaup, J.-P.;
Leach, S.; Taylor, R.; Bensasson, R. V. Chem. Phys. Lett.
2001, 339, 29–35.
24. Dardel, B.; Deschenaux, R.; Even, M.; Serrano, E.
Macromolecules 1999, 32, 5193–5198.
25. Jiang, D.; Aida, T. Nature 1997, 388, 454–456.
26. Junge, D. M.; McGrath, D. V. Chem. Commun. 1997,
857–858.
27. Junge, D. M.; McGrath, D. V. J. Am. Chem. Soc. 1999,
121, 4912–4913.
28. Archut, A.; Azzellini, G. C.; Balzani, V.; DeCola, L.;
Vo¨gtle, F. J. Am. Chem. Soc. 1998, 120, 12187–12191.
29. Sidorenko, A.; Houphouet-Boigny, C.; Villavicencio, O.;
Hashemzadeh, M.; McGrath, D. V.; Tsukruk, V. V.
Langmuir 2000, 16, 10569–10572.
Acknowledgements
This work was supported by the Brain Korea 21 Project
in 2001.
30. Oh-ishi, K.; Okamura, J.; Ishi-i, T.; Sano, M.; Shinkai, S.
Langmuir 1999, 15, 2224–2226.
31. Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990,
112, 7638–7647.
32. Scrivens, W. A.; Tour, J. M. J. Chem. Soc., Chem.
Commun. 1993, 1207–1209.
References
1. Issberner, J.; Moors, R.; Vo¨gtle, F. Angew. Chem., Int.
Ed. 1994, 33, 2413–2420.
2. Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendritic
Molecules: Concepts, Synthesis, Perspectives; VCH:
Weinheim, 1996.
33. Satisfactory elemental analyses and spectroscopic data
were obtained for all new compounds reported.
Selected physical data for 1: brown solid; mp >280°C
1
(dec.); H NMR (400 MHz, CDCl3) l 7.85 (m, 8H), 7.49
(m, 4H), 6.96 (m, 4H), 6.77 (s, 2H), 6.60 (s, 2H), 5.11 (s,
4H), 4.42 (s, 2H), 4.02 (m, 4H), 1.77 (m, 4H), 1.51 (m,
4H), 1.00 (m, 6H); 13C NMR (CDCl3) l 161.75, 159.95,
152.34, 146.81, 138.97, 130.50, 128.00, 124.83, 122.90,
114.69 (azobenzene and Ar. monomer C), 107.81, 101.78
(Ar. monomer C), 147.56, 146.17, 145.31, 145.04, 144.82,
144.74, 144.52, 144.44, 144.22, 144.10, 144.03, 144.00,
143.97, 143.65, 143.53, 143.24, 142.58, 142.03, 141.53,
141.46, 140.38, 139.67, 139.58, 139.35, 139.16, 139.09,
138.97, 136.80, 135.49, 134.60, 133.61, 132.70 (fullerene
carbons), 69.72 (O-CH2), 68.05 (N-CH2), 31.23 (CH2),
19.21 (CH2), 13.83 (CH3); FAB-MS m/z 1389 (M+), 1448,
720 (C60), 211 (base peak); FT-IR (KBr) w 3055, 2959,
2932, 2866, 1600, 1503, 1250, 1142, 839 cm−1; UV–vis
(CHCl3) umax (log m) 261 (5.05), 351 (4.91), 437 (sh, 4.00),
632 (3.39) nm at 10−5 M.
3. Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681–
1712.
4. Smith, D. K.; Diederich, F. Chem. Eur. J. 1998, 4,
1353–1361.
5. Archut, A.; Vo¨gtle, F. Chem. Soc. Rev. 1998, 27, 233–
240.
6. Frey, H. Angew. Chem., Int. Ed. 1998, 37, 2193–2197.
7. Gorman, C. Adv. Mater. 1998, 10, 295–309.
8. Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni,
S.; Venturi, M. Acc. Chem. Res. 1988, 31, 26–34.
9. Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. 1999, 38,
884–905.
10. Hearshaw, M. A.; Moss, J. R. Chem. Commun. 1999, 1–8.
11. Boswan, A. W.; Jannsen, H. M.; Meijer, E. W. Chem.
Rev. 1999, 99, 1665–1688.
Selected data for 2: brown solid; mp >279°C (dec.); 1H
NMR (400 MHz, CDCl3) l 7.87 (m, 16H), 7.45 (m, 8H),
6.96 (d, 8H), 6.40–6.70 (m, 9H), 4.80–5.20 (m, 14H), 4.01
(m, 8H), 1.77 (m, 8H), 0.98 (m, 12H); 13C NMR (CDCl3)
l 161.74, 160.07, 152.43, 146.87, 138.95, 130.51, 127.94,
124.81, 122.90, 114.74 (azobenzene and Ar. monomer C),
106.53, 106.16, 101.78 (Ar. monomer C), 147.73, 146.14,
12. Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev.
1999, 99, 1689–1746.
13. Berresheim, A. J.; Mu¨ller, M.; Mu¨llen, K. Chem. Rev.
1999, 99, 1747–1785.
14. Nierengarten, J.-F. Chem. Eur. J. 2000, 3667–3670.
15. Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001,
40, 74–91.