3002
S. Facchetti et al. / Tetrahedron: Asymmetry 17 (2006) 2993–3003
1027.5; 895.6; 799.1; 738.8; 714.0; 526.8. Anal. Calcd for
C39H49Br2O7P: C, 57.08; H, 6.02; Br, 19.47; O, 13.65; P,
3.77. Found: C, 57.12; H, 6.00; Br, 19.45; P, 3.78.
Acknowledgement
This work was supported by the University of Pisa, MIUR
(Project ‘High performance separation systems based on
chemo- and stereoselective molecular recognition’ Grant
2005037725).
4.2.10. Methyl 3a-acetyloxy-12a-(5,50-diphenylbiphenyl-
2,20-diyl)phosphite-5b-cholan-24-oate
3. Yield
0.49 g
24
(0.6 mmol, 68%). Mp = 71–73 ꢁC; ½aꢁD ¼ þ28:6 (c 0.95,
1
CH2Cl2). H NMR (300 MHz, benzene-d6, d): 0.50–2.09
References
(m, 37H); 0.5 (s, 3H); 0.72 (s, 3H); 1.12 (d, J = 6.6 Hz,
3H); 1.62 (s, 3H); 2.24–2.34 (m, 1H); 3.33 (s, 3H); 4.64–
4.66 (m, 1H); 4.8–4.9 (m, 1H); 7.3–7.58 (m, 16H). 13C
NMR (75 MHz, benzene-d6, d): 12.3; 17.8; 17.9; 20.9;
23.0; 23.7; 26.0; 27.0; 27.2; 27.8; 28.9 (d, 3J = 5.5 Hz);
31.1; 31.2; 32.5; 33.6; 34.3; 35.2; 25.9; 36.0; 41.9; 46.5;
46.7 (d, 3J = 4.0 Hz); 47.7; 50.9; 74.0; 78.8 (d,
2J = 17.5 Hz); 122.8; 127.3; 127.4; 127.5; 128.8; 128.9;
129.2; 129.3; 132.1; 138.8; 138.9; 140.7; 149.6 (d, 2J =
5.5 Hz); 149.9 (d, 2J = 6.0 Hz); 169.6; 173.7. 31P NMR
(121 MHz, benzene-d6, d): 153.1. IR (KBr, cmꢀ1): 2962.3;
1735.6; 1601.4; 1478.2; 1448.3; 1363.2; 1261.3; 1192.9;
1097.6; 1020.7; 900.0; 859.4; 799.9; 760.2; 696.0;
644.2; 600.3; 561.4. Anal. Calcd for C51H59O7P: C, 75.16;
H, 7.30; O, 13.74; P, 3.80. Found: C, 75.20; H, 7.29;
P, 3.82.
1. (a) Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171–196;
(b) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221–
3236.
2. (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346–353; (b)
Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.;
Nassz, R.; Feringa, B. L. Tetrahedron 2000, 56, 2865–2878;
(c) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew.
Chem., Int. Ed. 1996, 35, 2374–2376; (d) Zhang, F. Y.; Chan,
A. S. C. Tetrahedron: Asymmetry 1998, 9, 1179–1182; (e)
Huttenloch, O.; Spieler, J.; Waldmann, H. Chem. Eur. J.
2001, 7, 671–675; (f) Alexakis, A.; Benhaim, C.; Rosset, S.;
Humam, M. J. Am. Chem. Soc. 2002, 124, 5262–5263; (g)
Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guillen, F.;
Benhaim, C. Synlett 2001, 1375–1378; (h) Pamies, O.;
Dieguez, M.; Net, G.; Ruiz, A.; Claver, C. Tetrahedron:
Asymmetry 2000, 11, 4377–4383; (i) Alexakis, A.; Burton, J.;
Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.;
´
Leveque, J. M.; Maze, F.; Rosset, S. Eur. J. Org. Chem. 2000,
4.2.11. Methyl 3a-acetyloxy-12a-(5,50-diisopropylbiphenyl-
4011–4027; (j) Liang, L.; Au-Yeung, T. L.; Chan, A. S. C.
Org. Lett. 2002, 4, 3799–3801.
3. (a) Mikami, K.; Yamanaka, M. Chem. Rev. 2003, 103,
3369–3400; (b) Reetz, M. T.; Neugebeauer, T. Angew.
2,20-diyl)phosphite-5b-cholan-24-oate
4. Yield
1.39 g
25
(1.87 mmol, 76%). Mp = 55–60 ꢁC; ½aꢁD ¼ 52:0 (c 1.03,
1
CH2Cl2). H NMR (300 MHz, CDCl3, d): 0.74 .5 (s, 3H);
´
`
Chem., Int. Ed. 1999, 38, 179–181; (c) Dieguez, M.; Pamies,
0.94–2.4 m, 31H); 0.94 (s, 3H); 1.03 (d, J = 6.0 Hz, 3H);
1.31 (d, J = 3.9 Hz, 3H); 1.32 (d, J = 3.9 Hz, 3H); 2.96–
3.02 (m, 2H); 3.67 (s, 3H); 4.6–4.8 (m, 2H); 7.09–7.33 (m,
6H). 13C NMR (75 MHz, CDCl3, d): 12.7; 17.8; 17.9;
21.7; 23.3; 23.9; 24.3; 24.4; 24.5; 26.3; 26.7; 27.3; 27.8;
28.7; 31.1; 31.4; 32.5; 33.8; 33.9; 34.0; 34.6; 35.3; 35.9;
36.1; 42.1; 46.5; 46.8; 46.9; 47.9; 51.7; 74.5; 78.4 (d,
2J = 15.5 Hz); 122.1; 122.2; 126.8; 126.9; 128.5; 129.3;
131.2 (d, 3J = 3.1 Hz); 131.4 (d, 3J = 3.5 Hz); 145.4;
`
O.; Ruiz, A.; Castillon, S.; Claver, C. Chem. Eur. J. 2001, 7,
3086–3094.
4. (a) Alexakis, A.; Polet, D.; Benhaim, C.; Rosset, S. Tetra-
hedron: Asymmetry 2004, 15, 2199–2203; (b) Alexakis, A.;
Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc.
2002, 124, 5262–5263; (c) Alexakis, A.; Rosset, S.; Allamand,
J.; March, S.; Guillen, F.; Benhaim, C. Synlett 2001, 9, 1375–
1378; (d) Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.;
´
Fournioux, X.; van den Heuvel, A.; Leveˆque, J.; Maze, F.;
2
2
Rosset, S. Eur. J. Org. Chem. 2000, 4011–4027; (e) Scafato,
P.; Cunsolo, G.; Labano, S.; Rosini, C. Tetrahedron 2004, 60,
8801–8806.
145.6; 147.7 (d, J = 5.6 Hz); 148.2 (d, J = 6 Hz); 170.9;
174.9. 31P NMR (121 MHz, benzene-d6, d): 154.3. IR
(KBr, cmꢀ1): 2950.6; 2867.5; 1737.9; 1493.9; 1358.9;
1260.2; 1094.0; 1021.3; 927.9; 881.1; 798.0. Anal. Calcd
for C45H63O7P: C, 72.36; H, 8.50; O, 14.99; P, 4.15. Found:
C, 72.41; H, 8.48; P, 4.16.
5. Iuliano, A.; Facchetti, S.; Uccello-Barretta, G. J. Org. Chem.
2006, 71, 4943–4950.
6. Facchetti, S. Tesi di Laurea, University of Pisa, 2006.
7. Alexakis, A.; Polet, D.; Rosset, S.; March, S. J. Org. Chem.
2004, 69, 5660–5667.
8. Sogah, G. D. Y.; Cram, D. J. J. Am. Chem. Soc. 1979, 101,
3035–3042.
9. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981,
11, 513–519.
10. Kadyrov, R.; Heller, D.; Selke, R. Tetrahedron: Asymmetry
1998, 9, 329–340.
11. Escher, I. H.; Pfaltz, A. Tetrahedron 2000, 56, 2879–2888.
12. Mislow, K.; Glass, M. A. W.; O’Brien, R. E.; Rutkin, F.;
Steinberg, D. H.; Weiss, J.; Djerassi, C. J. Am. Chem. Soc.
1962, 84, 1455–1478.
4.2.12. Enantioselective conjugate addition of diethylzinc to
acyclic enones: general procedure. A solution of Cu(OTf)2
(0.025 mmol) and phosphite (0.03 mmol) in freshly distilled
solvent (5 mL) was stirred under a nitrogen atmosphere at
rt for 1 h. The solution was cooled to the reaction temper-
ature (see Tables 1–3) and diethylzinc (1.0 M in hexane,
1.5 mmol) was added. The enone was added slowly and
stirring was continued at that temperature and the reaction
was monitored by TLC. After complete conversion, the
mixture was poured into 1 M HCl (25 mL) and extracted
three times with diethyl ether. The combined organic layers
were washed with brine, dried over anhydrous Na2SO4, fil-
tered and evaporated to yield the crude 1,4-products. The
yields were determined by NMR analysis and the ees were
determined by HPLC analyses.
´
13. Jaffe, A.; Orchin, M. Theory and Application of UV
Spectroscopy; Wiley: New York, 1962; Harada, N.; Nakani-
shi, K. Circular Dichroic Spectroscopy, Exciton Coupling in
Organic Stereochemistry; University Science Books: Oxford,
1983.
14. Toluene was used instead of ACN as this last has a freezing
point too high for low temperature measurements and