Published on Web 10/05/2002
The Interplay of Bent-Shape, Lateral Dipole and Chirality in
Thiophene Based Di-, Tri-, and Tetracatenar Liquid Crystals
S. Holger Eichhorn, Alexander J. Paraskos, Keiki Kishikawa, and
Timothy M. Swager*
Contribution from the Department of Chemistry and Center for Materials Science and
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Received May 6, 2002
Abstract: A range of mesogenic molecules varying in both bend angle and strength of lateral dipole were
synthesized, and their phase behavior was characterized by polarizing microscopy, thermal analysis, X-ray
diffraction, and electrooptical measurements. We find the general destabilization of the liquid crystallinity
caused by strong lateral dipolar groups and the bent molecular shape are off-set in mesomorphic
tetracatenars, which display stable nematic, smectic, columnar, and cubic mesophases. The broad
mesomorphism of the tetracatenars containing lateral dipoles and their incompatibility with chiral induction
are explained by considering that loosely correlated dimers exist within the mesophases. Chiral mesophases
of derivatives with strong lateral dipoles were achieved by attaching fewer or different side chains to each
end of the mesogen.
Introduction
New types of liquid crystalline phases displayed by certain
bent-rod molecules (banana phases) have received much atten-
Dipole-dipole interactions and shape anisotropy have been
recognized as fundamental elements in the design of liquid
crystals since the first systematic synthetic studies in the early
decades of the 20th century.1,2 More recently, microphase
segregation3 and noncovalent interactions such as H-bonding4-6
have been added to the list of design concepts. By applying
these principles, it is possible to incorporate almost any chemical
structure into a liquid crystal as has been shown most notably
for C60.7
One of the present goals of synthetic liquid crystal research
is to understand the interplay between different elements of
design.8 For example, molecules with unfavorable shape can
be made mesogenic if favorable dipole-dipole interactions and/
or microphase segregation are used to compensate for the
deficiencies in shape. Exciting and surprising examples include
liquid crystalline dendrimers,9 columnar liquid crystals that lack
side chains,10 and unusually shaped amphiphilic molecules.11
tion in recent years.12-16 Novel ferroelectric17,18 and antiferro-
electric19-24 mesophases were obtained from initially achiral
molecules and macrophase separation of racemic mixtures16 into
homo-chiral domains was observed. However, the design
principles appear to be subtle, as the majority of bent-rod
(banana) mesogens did not display these new mesophases, if
any mesophase at all, despite possessing similar molecular
structures.25-27 The ultimate goal of being able to accurately
predict the liquid crystalline properties of many molecular
structures remains elusive, despite the numerous mesomorphic
(12) Niori, T.; Sekine, T.; Watanabe, J.; Furukawa, T.; Takezoe, H. J. Mater.
Chem. 1996, 6, 1231-1233.
(13) Sekine, T.; Niori, T.; Sone, M.; Watanabe, J.; Choi, S. W.; Takanishi, Y.;
Takezoe, H. Jpn. J. Appl. Phys., Part 1 1997, 36, 6455-6463.
(14) Heppke, G.; Moro, D. Science 1998, 279, 1872-1873.
(15) Watanabe, J.; Niori, T.; Sekine, T.; Takezoe, H. Jpn. J. Appl. Phys., Part
2 1998, 37, L139-L142.
(16) Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Clark, N. A.; Koerblova,
E.; Walba, D. M. Science 1997, 278, 1924-1927.
(17) Sekine, T.; Takanishi, Y.; Niori, T.; Watanabe, J.; Takezoe, H. Jpn. J. Appl.
Phys., Part 2 1997, 36, L1201-L1203.
(1) Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V. In Handbook
of Liquid Crystals; Wiley- VCH: Weinheim, 1998; Vol. 1.
(2) Kelker, H.; Hatz, R. In Handbook of Liquid Crystals; Wiley-VCH:
Weinheim, 1980.
(18) Walba, D. M.; Korblova, E.; Shao, R.; Maclennan, J. E.; Link, D. R.; Glaser,
M. A.; Clark, N. A. Science 2000, 288, 2181-2184.
(19) Wang, K.; Jakli, A.; Li, H. F.; Yang, Y. G.; Wen, J. X. Liq. Cryst. 2001,
28, 1705-1708.
(3) Pegenau, A.; Hegmann, T.; Tschierske, C.; Diele, S. Chem. Eur. J. 1999,
5, 1643-1660.
(20) Reddy, R. A.; Sadashiva, B. K.; Dhara, S. Chem. Commun. 2001, 1972-
(4) Kato, T. In Handbook of Liquid Crystals; Vill, V., Ed.; Wiley-VCH:
Weinheim, 1998; Vol. 2B, pp 969-979.
1973.
(21) Walba, D. M.; Korblova, E.; Shao, R. F.; Maclennan, J. E.; Link, D. R.;
Glaser, M. A.; Clark, N. A. J. Phys. Org. Chem. 2000, 13, 830-836.
(22) Shen, D.; Pegenau, A.; Diele, S.; Wirth, I.; Tschierske, C. J. Am. Chem.
Soc. 2000, 122, 1593-1601.
(5) Nishikawa, E.; Samulski, E. T. Liq. Cryst. 2000, 27, 1463-1471.
(6) Nishikawa, E.; Samulski, E. T. Liq. Cryst. 2000, 27, 1457-1462.
(7) Dardel, B.; Guillon, D.; Heinrich, B.; Deschenaux, R. J. Mater. Chem.
2001, 11, 2814-2831.
(23) Wrobel, S.; Haase, W.; Kilian, D.; Chien, L. C.; Chong-Kwang, L.
Ferroelectrics 2000, 243, 277-289.
(8) Goodby, J. W.; Bruce, D. W.; Hird, M.; Imrie, C.; Neal, M. J. Mater.
Chem. 2001, 11, 2631-2636.
(24) Heppke, G.; Parghi, D. D.; Sawade, H. Ferroelectrics 2000, 243, 269-
(9) Richardson, R. M.; Ponomarenko, S. A.; Boiko, N. I.; Shibaev, V. P. Liq.
Cryst. 1999, 26, 101-108.
276.
(25) Pelzl, G.; Diele, S.; Weissflog, W. AdV. Mater. 1999, 11, 707-724.
(26) Shen, D.; Diele, S.; Pelzl, G.; Wirth, I.; Tschierske, C. J. Mater. Chem.
1999, 9, 661-672.
(10) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int.
Ed. Engl. 1998, 37, 296-299.
(11) Kolbel, M.; Beyersdorff, T.; Sletvold, I.; Tschierske, C.; Kain, J.; Diele,
S. Angew. Chem., Int. Ed. 1999, 38, 1077-1080.
(27) Matraszek, J.; Mieczkowski, J.; Szydlowska, J.; Gorecka, E. Liq. Cryst.
2000, 27, 429-436.
9
12742
J. AM. CHEM. SOC. 2002, 124, 12742-12751
10.1021/ja0268027 CCC: $22.00 © 2002 American Chemical Society