ORGANIC
LETTERS
2002
Vol. 4, No. 22
3797-3798
Cyclization of Aryl Silanes with
Unexpected Retention of Silicon
Stephen Philip Fearnley* and Michael W. Tidwell
Department of Chemistry and Physics, Lamar UniVersity, P.O. Box 10022,
Beaumont, Texas 77710
Received July 10, 2002 (Revised Manuscript Received September 17, 2002)
ABSTRACT
Intramolecular Friedel−Crafts cyclization of 2-O-benzyl ethers at a model pyranose acetal is activated by incorporation of a trimethylsilyl
group, albeit via unexpected, presumably steric means.
The intramolecular Friedel-Crafts condensation of suitably
tethered benzylic aryls at activated cyclic oxoniums, eq 1,
offers a rapid entry to isochroman targets.1 In fact, this
process is a major competing pathway during intermolecular
glycosylation.2 These side reactions have been adapted,
notably by Martin,3 yet remain subject to subtle and
unpredictable stereoelectronic control,4 especially in the
pyranose series.5 Moreover, many employ exotic anomeric
activation or require electron-rich arenes.
to enhance the process on electronic grounds (increased
nucleophilicity and augmented stability of intermediate
carbocation) as well as cater to regiocontrol in arenes with
more complex substitution patterns.
We recently considered a directly analogous arylsilane-
mediated Friedel-Crafts closure6,7 to promote the overall
desired annulation, eq 2. We expected this ortho-silyl moiety
(1) For example, the pyranonaphthoquinone antibiotics: Brimble, M. A.;
Nairn, M. R.; Prabaharan, H. Tetrahedron 2000, 56, 1937.
(2) (a) Martin, O. R. Tetrahedron Lett. 1985, 26, 2055. (b) Suzuki, K.;
Maeta, H.; Suzuki, T.; Matsumoto, T. Tetrahedron Lett. 1989, 30, 6879.
Maeta, H.; Matsumoto, T.; Suzuki, K. Carbohydr. Res. 1993, 249, 49. (c)
Bu¨rli, R.; Vasella, A. HelV. Chim. Acta 1996, 79, 1159. (d) Crich, D.; Cai,
W.; Dai, Z. J. Org. Chem. 2000, 65, 1291. (e) Araki, Y.; Kobayashi, N.;
Ishido, Y.; Nagasawa, J. Carbohydr. Res. 1987, 171, 125. (f) Miethchen,
R.; Gabriel, T. J. Fluorine Chem. 1994, 67, 11. (g) Hosoya, T.; Takashiro,
E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. (h)
Kovensky, J.; Sinay¨, P. Eur. J. Org. Chem. 2000, 3523.
(3) (a) Martin, O. R. Carbohydr. Res. 1987, 171, 211. (b) Martin, O. R.;
Hendricks, C. A. V.; Deshpande, P. P.; Cutler, A. B.; Kane, S. A.; Rao, S.
P. Carbohydr. Res. 1990, 196, 41. (c) Rousseau, C.; Martin, O. R.
Tetrahedron: Asymmetry 2000, 11, 409. Other related studies: (d) Martin,
O. R.; Rao, S. P.; El-Shenawy, H. A.; Kurz, K. G.; Cutler, A. B. J. Org.
Chem. 1988, 53, 3287. (e) Martin, O. R.; Rao, S. P.; Kurz, K. G.; El-
Shenawy, H. A. J. Am. Chem. Soc. 1988, 110, 8698.
We constructed a prototypical substrate via epoxidation
of dihydropyran in MeOH,8 followed by benzylation with
(5) A brief survey of unactivated benzyl substrates is illustrative. 1,6-
Anhydro-D-glucose: no tricyclic products (ref 3b). 1-O-Acetyl hexapyranoses
(manno- and gluco-): “complex mixtures” (refs 2a and 3a). R-Glucopyran-
osyl chloride: 74% yield. Verlhac, P.; Leteux, C.; Toupet, L.; Veyrie`res,
A. Carbohydr. Res. 1996, 291, 11.
(6) For reviews of arylsilanes in regiospecific electrophilic aromatic
substitutions, see: Eaborn, C. J. Organomet. Chem. 1975, 100, 43, Fleming,
I. In ComprehensiVe Organic Chemistry; Barton, D. H. R., Ollis, W. D.,
Eds.; Pergamon: Oxford, 1979; Vol. 3, Chapter 13, p 613.
(7) For specific intramolecular examples, see: (a) Miller, R. B.; Tsang,
T. Tetrahedron Lett. 1988, 29, 6715. (b) Majetich, G.; Zhang, Y.; Feltmann,
T. L.; Belfoure, V. Tetrahedron Lett. 1993, 34, 441. (c) Cho, I.-S.; Tu,
C.-L.; Mariano, P. S. J. Am. Chem. Soc. 1990, 112, 3594.
(4) For example, double C-glycosidation: Martin, O. R.; Mahnken, R.
E. J. Chem. Soc., Chem. Commun. 1986, 497. Martin, O. R.; Rao, S. P.;
Hendricks, C. A. V.; Mahnken, R. E. Carbohydr. Res. 1990, 202, 49.
(8) Sweet, F.; Brown, R. K. Can. J. Chem. 1966, 44, 1571.
10.1021/ol026494h CCC: $22.00 © 2002 American Chemical Society
Published on Web 10/04/2002