Published on Web 10/11/2002
Synthesis of the Eight Enantiomerically Pure Diastereomers
of the 12-F2-Isoprostanes
Douglass F. Taber,* Ming Xu, and John C. Hartnett1
Contribution from the Department of Chemistry and Biochemistry, UniVersity of Delaware,
Newark, Delaware 19716
Received June 7, 2002
Abstract: Syntheses of the eight enantiomerically pure diastereomers of the 12-F2-isoprostanes (4-11)
are described. The key steps included rhodium-mediated intramolecular cyclopropanation and enzymatic
resolution of the racemic diol 12.
Introduction
report the preparation of all eight of the enantiomerically pure
diastereomers of the 12-F2-isoprostanes (4-11) from the racemic
diol 12 (Scheme 1). This is the first preparation of the 12-F2c
series.
The isoprostanes (e.g. 1-4), a new family of prostaglandin-
like compounds, were recently discovered to be produced in
vivo in humans, independent of the cyclooxygenase enzymes,
by free radical mediated oxidation of membrane-bound arachi-
donic acid.2 There are D-ring, E-ring, and F-ring isoprostanes.
Four different regioisomers of each of these classes of isopros-
tanes are formed.3 Interestingly, levels of F2-isoprostanes (1-
4) in normal human biological fluids exceed levels of prosta-
glandins. Several synthesis routes to particular isoprostanes have
been reported.4-10 Since we are interested in the physiological
activity of each of the isoprostanes,11 we thought it more
attractive to prepare, through a common advanced intermediate,
the several diastereomers of an isoprostane family. Herein, we
* To whom correspondence should be addressed. E-mail taberdf@udel.edu.
(1) Undergraduate research participant, University of Delaware.
(2) (a) Morrow, J. D.; Hill, K. E.; Burk, R. F.; Nammour, T. M.; Badr, K. F.;
Roberts, L. J., II. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9383. (b) Morrow,
J. D.; Awad, J. A.; Kato. T.; Takahashi, K.; Badr, K. F.; Roberts, L. J., II;
Burk, R. F. J. Clin. InVest. 1992, 90, 2502. (c) Morrow, J. D.; Awad, J.
A.; Boss, H. J.; Blair, J. A.; Roberts, L. J., II. Proc. Natl. Acad. Sci. U.S.A.
1992, 89, 10721. (d) Morrow, J. D.; Minton, T. A.; Mukundan, C. R.;
Campell, M. D.; Zackert, W. E.; Daniel, V. C.; Badr, K. F.; Blair, J. A.;
Roberts, L. J., II. J. Biol. Chem. 1994, 269, 4317.
(3) For a summary of isoprostane nomenclature, see: Taber, D. F.; Morrow,
J. D.; Roberts, L. J., II. Prostaglandins 1997, 53, 63. (b) For an alternative
nomenclature system for the isoprostanes, see: Rokach, J.; Khanapure, S.
P.; Hwang, S. W.; Adiyaman, M.; Lawson, J. A.; FitzGerald, G. A.
Prostaglandins 1997, 54, 853.
(4) For synthetic routes to 5-F2t-isoprostane, see: (a) Taber, D. F.; Kanai, K.;
Pina, R. J. Am. Chem. Soc. 1999, 121, 7773. (b) Adiyaman, M.; Lawson,
J. A.; Hwang, S. W.; Khanapure, S. P.; FitzGerald, G. A.; Rokach, J.
Tetrahedron Lett. 1996, 37, 4849.
(5) For a synthetic route to 5-F2c-isoprostane, see: Adiyaman, M.; Lawson, J.
A.; Hwang, S. W.; FitzGerald, G. A.; Rokach, J. Tetrahedron Lett. 1998,
39, 7039.
(6) For synthetic routes to 8-F2t-isoprostane, see: (a) Taber, D. F.; Jiang, Q.
J. Org. Chem. 2001, 66, 1876. (b) Adiyaman, M.; Li, H.; Lawson, J. A.;
Hwang, S. W.; Khanapure, S. P.; FitzGerald, G. A.; Rokach, J. Tetrahedron
Lett. 1997, 38, 3339.
(7) For synthetic routes to 15-F2t-isoprostane, see: (a) Corey, E. J.; Shih, C.;
Shih, N.-Y.; Shimoji, K. Tetrahedron Lett. 1984, 25, 5013. (b) Hwang, S.
W.; Adiyaman, M.; Khanapure, S. P.; Schio. L.; Rokach, J. J. Am. Chem.
Soc. 1994, 116, 10829. (c) Taber, D. F.; Herr, R. J. Gleave, D. M. J. Org.
Chem. 1997, 62, 194. (d) Taber, D. F.; Kanai, K. Tetrahedron 1998, 54,
11767. (e) Durand, T.; Guy, A.; Vidal, J.-F.; Rossi, J.-C. J. Org. Chem.
2002, 67, 3615.
(8) For synthetic routes to 15-F2c-isoprostane, see: (a) Larock, R. C.; Lee, N.
H. J. Am. Chem. Soc. 1991, 113, 7815. (b) Vionnet, J.-P.; Renaud, P. HelV.
Chim. Acta 1994, 77, 1781. (c) Hwang, S. W.; Adiyaman, M.; Khanapure,
S. P.; Rokach, J. Tetrahedron Lett. 1996, 37, 779. (d) Lai, S.; Lee, D.; Sun
U, J. Cha, J. K. J. Org. Chem. 1999, 64, 7213.
Results and Discussion
The 12-F2-isoprostanes were first identified in human plasma
samples by Roberts.11 To screen the physiological activity of
the eight enantiomerically pure diastereomers of the 12-F2-
isoprostanes, it will be necessary to individually prepare each
of them. One synthesis, specifically of 12-F2t-isoprostane 4, was
reported by Rokach in 1998.9
It seemed more attractive to develop a stereodivergent
synthesis scheme toward these targets from a common inter-
mediate, rather than design different syntheses of each. We
envisioned (Scheme 1) that the eight target molecules could be
prepared from the same racemic intermediate 12. The two
enantiomers of 12, which could be obtained by enzymatic
resolution,12 could each be converted to two of the four
(9) For synthetic routes to 12-F2t-isoprostane, see: (a) Pudukulathan, Z.; Manna,
S.; Hwang, S. W.; Khanapure, S. P.; Lawson, J. A.; FitzGerald, G. A.;
Rokach, J. J. Am. Chem. Soc. 1998, 120, 11953. (b) Hwang, S. W.;
Adiyaman, M.; Lawson, J. A.; FitzGerald, G. A.; Rokach, J. Tetrahedron
Lett. 1999, 40, 6167.
(10) For a synthetic route to 15-E2t-isoprostane, see: Taber, D. F.; Hoerrner,
R. S. J. Org. Chem. 1992, 57, 441.
(11) Morrow, J. D.; Roberts, L. J., II. Biochem. Pharmacol. 1996, 51, 1.
(12) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry;
Pergamon Press: Oxford, U.K., 1994; and references therein.
9
10.1021/ja020816v CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. 2002, 124, 13121-13126
13121