COMMUNICATIONS
[1] C. Niehrs, R. Beisswanger, W. B. Huttner, Chem.-Biol. Interact. 1994,
92, 257 271.
[19] M. Bartra, P. Romea, F. Urpi, J. Vilarrasa, Tetrahedron 1990, 46, 587
594.
[2] a) M. Farzan, T. Mirzabekov, P. Kolchinsky, R. Wyatt, M. Cayabyab,
N. P. Gerard, C. Gerard, J. Sodroski, H. Choe, Cell 1999, 96, 667 676;
b) A. Leppanen, S. P. White, J. Helin, R. P. McEver, R. D. Cummings,
J. Biol. Chem. 2000, 275, 39569 39578; c) E. G. Cormier, D. N. H.
Tran, L. Yukhayeva, W. C. Olson, T. Dragic, J. Virol. 2001, 75, 5541
5549; c) J. Dong, P. Ye, A. J. Schade, S. Gao, G. M. Romo, N. T. Turner,
L. V. McIntire, J. A. Lopez, J. Biol. Chem. 2001, 276, 16690; e) S.
Costagliola, V. Panneels, M. Bonomi, J. Koch, M. C. Many, G. Smits,
G. Vassart, EMBO J. 2002, 21, 504.
[3] W. S. Somers, J. Tan, G. D. Shaw, R. T. Camphausen, Cell 2000, 103,
467 479. For a review, see: J. W. Kehoe, C. R. Bertozzi, Chem. Biol.
2000, 7, R57-R61.
[4] a) Y. Kurano, T. Kimura, S. Sakakibara, J. Chem. Soc. Chem.
Commun. 1987, 323 325; b) N. Fujii, S. Futaki, S. Funakoshi, K.
Akaji, H. Morimoto, R. Doi, K. Inoue, M. Kogire, S. Sumi, M. Yun, T.
Tobe, M. Aono, M. Matsuda, H. Narusawa, M. Moriga, H. Yajima,
Chem. Pharm. Bull. 1988, 36, 3281 3291; c) K. Kitagawa, S. Futaki, T.
Yagami, J. Synth. Org. Chem. Jpn. 1994, 52, 675 685.
[20] Y. Matsubayashi, H. Hanai, O. Hara, Y. Sakagami, Biochem. Biophys.
Res. Commun. 1996, 225, 209 214.
[21] D. Sako, X. J. Chang, K. M. Barone, G. Vachino, H. M. White, G.
Shaw, G. M. Veldman, K. M. Bean, T. J. Ahern, B. Furie, D. A.
Cumming, G. R. Larsen, Cell 1993, 75, 1179 1186.
[22] a) D. Sako, K. M. Comess, K. M. Barone, R. T. Camphausen, D. A.
Cumming, G. D. Shaw, Cell 1995, 83, 323 331; b) T. Pouyani, B. Seed,
Cell 1995, 83, 333 343.
[23] For syntheses of other sulfated peptides derived from PSGL-1, see:
a) A. Leppanen, P. Mehta, Y. B. Ouyang, T. Z. Ju, J. Helin, K. L.
Moore, I. van Die, W. M. Canfield, R. P. McEver, R. D. Cummings, J.
Biol. Chem. 1999, 274, 24838 24848; b) K. M. Koeller, M. E. B.
Smith, R. F. Huang, C. H. Wong, J. Am. Chem. Soc. 2000, 122, 4241
4242; c) P. Durieux, J. Fernandez-Carneado, G. Tuchscherer, Tetrahe-
dron Lett. 2001, 42, 2297 2299.
[24] See reference [23] and C. R. Bertozzi, L. L. Kiessling, Science 2001,
291, 2357 2364.
[5] a) K. Barlos, D. Gatos, J. Kallitsis, G. Papaphotiu, P. Sotiriu, W. Q.
Yao, W. Schafer, Tetrahedron Lett. 1989, 30, 3943 3946; b) S. V.
Campos, L. P. Miranda, M. Meldal, J. Chem. Soc. Perkin Trans. 1 2002,
682 686.
[6] K. Barlos, D. Gatos, S. Kapolos, G. Papaphotiu, W. Schafer, W. Q. Yao,
Tetrahedron Lett. 1989, 30, 3947 3950.
Nanotubes of Group 4 Metal Disulfides**
[7] K. Kitagawa, C. Aida, H. Fujiwara, T. Yagami, S. Futaki, Tetrahedron
Lett. 1997, 38, 599 602.
Manashi Nath and C. N. R. Rao*
[8] K. Kitagawa, C. Aida, H. Fujiwara, T. Yagami, S. Futaki, M. Kogire, J.
Ida, K. Inoue, J. Org. Chem. 2001, 66, 1 10.
[9] See reference [2b] and T. Young, Ph.D. thesis, University of Wisconsin
(Madison), 2001.
[10] B. Loubinoux, S. Tabbache, P. Gerardin, J. Miazimbakana, Tetrahe-
dron 1988, 44, 6055 6064.
[11] E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297 386.
[12] a) T. Benneche, K. Undheim, Acta Chem. Scand. B 1983, 37, 93
96; b) P. J. Garegg, Adv. Carbohyd. Chem. Biochem. 1997, 52, 179
205.
[13] For a detailed description of various conditions for activation of 3, see
the Supporting Information.
[14] a) M. Sakaitani, Y. Ohfune, Tetrahedron Lett. 1985, 26, 5543 5546;
b) A. J. Zhang, D. H. Russell, J. P. Zhu, K. Burgess, Tetrahedron Lett.
1998, 39, 7439 7442.
[15] J. Paladino, C. Guyard, C. Thurieau, J. L. Fauchere, Helv. Chim. Acta
1993, 76, 2465 2472.
[16] a) T. R. Burke, M. S. Smyth, A. Otaka, P. P. Roller, Tetrahedron Lett.
1993, 34, 4125 4128; b) S. F. Liu, C. Dockendorff, S. D. Taylor, Org.
Lett. 2001, 3, 1571 1574.
[17] See the Supporting Information for the structure. Crystal data for
C26H24N4O5: Crystal size ¼ 0.09 î 0.02 î 0.02 mm3, orthorhombic,
P212121, a ¼ 5.0195(5), b ¼ 19.2028(12), c ¼ 24.566(2) ä, V¼
2367.9(3) ä3, Dcacl ¼ 1.325 mgmꢀ3, 2qmax ¼ 41.068, AgKa radiation (l ¼
0.5594 ä), w scans, T¼ 173(1) K, 26122 independent and 2803 unique
reflections. The data were corrected for Lorentz and polarization
effects, the empirical absorption correction was performed with
SADABS as described in R. H. Blessing, Acta Crystallogr. Sect. A
1995, 51, 33 38, m ¼ 0.058 mmꢀ1, Tmax/Tmin ¼ 0.9988/0.9948. The struc-
ture was solved and refined with the program package SHELXTL
(version 5.1) program library (G. Sheldrick, Bruker Analytical X-Ray
Systems, Madison, WI). All non-hydrogen atoms were refined with
anisotropic displacement coefficients. All hydrogen atoms were
included in the structure-factor calculation at idealized positions.
The final least-squares refinement of 317 parameters against 2803 da-
ta resulted in residual factors R (based on F2 for I ꢁ 2s) and wR (based
on F2 for all data) of 0.0667 and 0.2167, respectively. The final
difference Fourier map was featureless. CCDC-188441 (1) contains
the supplementary crystallographic data for this paper. These data can
ving.html (or from the Cambridge Crystallographic Data Centre, 12,
Union Road, Cambridge CB21EZ, UK; fax: (þ 44)1223-336-033; or
deposit@ccdc.cam.ac.uk).
Since the discovery of the carbon nanotubes, there has been
active interest in exploring whether other layered materials,
especially metal disulfides such as MoS2 and WS2, form
nanotubes and related structures. Tenne et al.[1,2] succeeded in
preparing nanotubes of MoS2 and WS2 by first heating the
metal oxide in a stream of forming gas (95% N2 þ 5% H2)
followed by reaction with H2S at elevated temperatures (700
10008C). Thermal decomposition of the ammonium thiome-
tallate (NH4)2MS4 (M ¼ Mo or W) in a H2 atmosphere has
been employed recently to obtain the disulfide nanotubes.[3]
Metal trisulfides are formed as intermediates in the formation
of the disulfide nanotubes in both of the above methods.
Accordingly, MoS2 and WS2 nanotubes could be prepared
directly from the decomposition of MoS3 and WS3 in a
hydrogen atmosphere.[3] NbS2 nanotubes have also been
prepared by the thermal decomposition of NbS3 in a hydrogen
atmosphere at 10008C.[4] These results suggested that it may
indeed be possible to prepare nanotubes of other layered
disulfides by the thermal decomposition of appropriate
trisulfide precursors. Since the disulfides of Group 4 metals,
such as Ti, Zr, and Hf, possess layered hexagonal struc-
tures,[5,6] we considered it feasible to prepare the nanotubes of
these materials starting from their trisulfides. Herein we
[*] Prof. Dr. C. N. R. Rao, M. Nath
CSIR Centre For Excellence In Chemistry and
Chemistry and Physics of Materials Unit
Jawaharlal Nehru Centre for Advanced Scientific Research
Jakkur P.O., Bangalore 560 064 (India)
E-mail: cnrrao@jncasr.ac.in
and
Solid State And Structural Chemistry Unit
Indian Institute of Science
Bangalore 560 012 (India)
Fax : (þ 91)80-846-2760
[**] The authors thank the DRDO (India) for research support and Mr.
Md. Motin Seikh and Dr. N. Chandrabhas for help with the Raman
measurements.
[18] For details, see the Supporting Information.
Angew. Chem. Int. Ed. 2002, 41, No. 18
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4118-3451 $ 20.00+.50/0
3451