C O M M U N I C A T I O N S
Table 1. The Tandem Bamford-Stevens/Claisen Reactiona
cyclohexanols 28 and 30 with excellent diastereoselectivity.13
Alternatively, using reductive conditions (DIBAL, -40 °C) for the
rearrangement of the intermediate (Z)-enol ethers furnished the
corresponding unsaturated alcohol as the major product (Table 2,
entries 3-5). Notably, R,â-unsaturated hydrazones 34 and 36
undergo a Bamford-Stevens/Claisen/Cope rearrangement cascade
(entries 6 and 7) with excellent stereoselectivity observed for each
example.14
In summary, we have developed a tandem rhodium-catalyzed
Bamford-Stevens/Claisen rearrangement sequence. The method
relies on the in situ generation and presumed catalytic interception
of non-carbonyl-stabilized diazoalkanes to form (Z)-enol ethers with
nearly complete stereoselectivity, thereby establishing a general
route to the (Z)-isomer of simple acyclic Claisen enol ethers.
Additionally, this work further establishes the utility and feasibility
of generating rhodium carbenoids from ketones. We are currently
investigating the scope and generality of such in situ generated non-
carbonyl-stabilized rhodium carbenoids for other reactions including
those involving asymmetric catalysis and chemically triggered
Eschenmoser hydrazone equivalents.
Acknowledgment. The authors wish to thank the NSF (CHE-
0135056), the Dreyfus Foundation, Merck Research Laboratories,
and Abbott Laboratories for financial support.
Supporting Information Available: Experimental details and
characterization data for all new compounds (PDF). This material is
a Rh2(OAc)4 (1 mol %), ClCH2CH2Cl, 130 °C, 2-4 h. b R ) NCH2CHPh.
c Diastereomer ratios determined by 1H NMR of the crude reaction mixture.
d Subsequent treatment with Me2AlCl at -40 °C. e Rh2(OAc)4, NMP, 200
°C, 1 h.
References
(1) (a) Wipf, P. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, Chapter 7.2; p 827. (b)
Ziegler, F. E. Chem. ReV. 1988, 88, 1423.
Table 2. Cascade Reactionsa
(2) Santelli, M.; Pons, J.-M. Lewis Acids and SelectiVity in Organic Synthesis;
CRC Press: New York, 1996.
(3) For alternative approaches, see: (a) Aggarwal, V. K.; Vicente, J.; Bonnert,
R. V. Org. Lett. 2001, 3, 2785. (b) Doyle, M. P.; High, K. G.; Su-Min,
O.; Osborn, A. K. Tetrahedron Lett. 1989, 30, 3049.
(4) (a) Felix, D.; Mu¨ller, R. K.; Horn, U.; Joos, R.; Schreiber, J.; Eschenmoser,
A. HelV. Chim. Acta 1972, 55, 1276. For a recent review, see: (b) Kirmse,
W. Eur. J. Org. Chem. 1998, 2, 201.
(5) (a) Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735. (b) Ojima,
I.; Kondo, K. Bull. Chem. Soc. Jpn. 1973, 46, 1539.
(6) (a) For a thermal Bamford-Stevens reaction using an aziridinyl imine,
see: Mohamadi, F.; Collum, D. B. Tetrahedron Lett. 1984, 25, 271. For
Shapiro reactions of aziridinyl imines, see: (b) Maruoka, K.; Oishi, M.;
Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 2289. (c) Evans, D. A.;
Nelson, J. V. J. Am. Chem. Soc. 1980, 102, 774.
(7) For an excellent monograph on the preparation and use of diazo carbonyl
compounds, see: Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds: From
Cyclopropanes to Ylides; Wiley & Sons: New York, 1998.
(8) N-aziridinyl imines in combination with catalysis have seen limited use.
For examples, see: (a) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J.
M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637. (b) Sarkar, T. K.; Ghorai,
B. K. J. Chem. Soc., Chem. Commun. 1992, 1184. (c) Fang, F. G.; Maier,
M. E.; Danishefsky, S. J.; Schulte, G. J. Org. Chem. 1990, 55, 831.
(9) All hydrazones were prepared from the corresponding ketones. See the
Supporting Information.
(10) (a) Taber, D. F.; Herr, R. J.; Pack, S. K.; Geremia, J. M. J. Org. Chem.
1996, 61, 2908. (b) Pirrung, M. C.; Hwu, J. R. Tetrahedron Lett. 1983,
24, 565. (c) See refs 3b and 8b.
(11) For an alternative rhodium carbenoid-initiated Claisen rearrangement,
see: Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A.
A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748.
(12) (a) Lutz, R. P. Chem. ReV. 1984, 84, 205. (b) Nonoshita, K.; Banno, H.;
Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316. (c) Takai,
K.; Mori, I.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1984, 57,
446.
(13) For a similar ene reaction, see: Corey, E. J.; Roberts, B. E.; Dixon, B. R.
J. Am. Chem. Soc. 1995, 117, 193.
(14) For the Tandem Claisen Cope reaction, see: Ziegler, F. E.; Piwinski, J.
J. J. Am. Chem. Soc. 1982, 104, 7181.
a Rh2(OAc)4 (1 mol %), ClCH2CH2Cl, 130 °C, 2-8 h. b R ) NCH2CHPh.
c Diastereomer ratios determined by 1H NMR of the crude reaction mixture.
d Subsequent treatment with Me2AlCl at -40 °C. e Subsequent treatment
with DIBAL at -40 °C.
In addition to the Bamford-Stevens/Claisen sequence, we have
investigated a number of cascade reactions, wherein a third chemical
step occurs after the initial tandem process. For instance, Lewis
acid promotion of neryl and geranyl ethers 27 and 29 induces a
cascade terminating in a carbonyl-ene reaction to produce the
JA028020J
9
J. AM. CHEM. SOC. VOL. 124, NO. 42, 2002 12427