Excitation of 1 at 342 nm results in an overall calculated
FRET efficiency of more than 95%. More specifically, 98% of
the energy D1 absorbs is transferred to D2, and 97% of this
energy is transferred to Ac, resulting in a near 7-fold increase in
core emission (vide supra). The large increase in Ac emission
when excited at either donor indicates that there are no major
pathways competing with the Ac emission. That is, such an
increase in core emission would not be expected if donor
chromophore aggregation and self-quenching were competing
with ET. This has been demonstrated in similar systems,5,11 and
will be further explored using time-resolved studies. Evidence
of core excimer formation was not found in any of the
experiments conducted.
steady-state photophysical analysis of model dendrimer 14,
which places 79% as an upper limit to the amount of FRET that
may occur in the undesired direction, i.e. directly from D1 to
Ac. Time-resolved experiments currently underway should
provide a more detailed view of the dynamics occurring within
this system.
Professor Alex Adronov (McMaster University) is gratefully
acknowledged for the synthesis of several starting materials.
Financial support of this research comes from the AFOSR (No.
FDF-49620-01-1-0167). D. W. B. acknowledges NSERC
(Canada) for a post-doctoral fellowship.
Notes and references
Dendrimer 1 represents a novel approach to examine cascade
unidirectional FRET in a flexible system. It was shown that ET
within this system favors a cascade route, moving from an
initial chromophore through an intermediate chromophore and
onto a final acceptor chromophore. This is evidenced in the
1 (a) G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-
Lawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs, Nature, 1995, 374,
517; (b) W. Kühlbrandt and D. N. Wang, Nature, 1991, 350, 130; (c) W.
Kühlbrandt, D. N. Wang and Y. Fujiyoshi, Nature, 1994, 614; (d) W.
Kühlbrandt, Nature, 1995, 374, 497; (e) A. N. Glazer, Annu. Rev.
Biophys. Biophys. Chem., 1995, 14, 47.
2 S. L. Gilat, A. Adronov and J. M. J. Fréchet, Angew. Chem., Int. Ed.,
1999, 38, 1422.
3 S. L. Gilat, A. Adronov and J. M. J. Fréchet, J. Org. Chem., 1999, 64,
7474.
4 (a) A. Adronov, P. R. L. Malenfant and J. M. J. Fréchet, Chem. Mater.,
2000, 12, 1463; (b) F. V. R. Neuwahl, R. Righini, A. Adronov, P. R.
Malenfant and J. M. J. Fréchet, J. Phys. Chem., 2001, 105, 1307.
5 A. Adronov, S. L. Gilat, J. M. J. Fréchet, K. Ohta, F. V. R. Neuwahl and
G. R. Fleming, J. Am. Chem. Soc., 2000, 122, 1175.
6 (a) V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka and F.
Vögtle, J. Am. Chem. Soc., 2002, 124, 6461; (b) H. B. Baudin, J.
Davidsson, S. Serroni, A. Juris, V. Balzani, S. Campagna and L.
Hammasström, J. Phys. Chem. A., 2002, 106, 4312; (c) F. Vögtle, M.
Plevoets, M. Nieger, G. C. Azzellini, A. Credi, L. De Cola, V. De
Marchis, M. Venturi and V. Balzani, J. Am. Chem. Soc., 1999, 121,
6290.
Fig. 4 Emission spectra of 6 (lex = 342 nm) and 14 (lex = 342 and 555 nm)
in CHCl3 at rt. Inset: Absorption spectra of 6 and 14 in CHCl3 at rt.
7 J. Kim, T. McQuade, A. Rose, Z. Zhu and T. M. Swager, J. Am. Chem.
Soc., 2001, 123, 11488.
8 M. Berggren, A. Dodabalapur, R. E. Slusher and Z. Bao, Nature, 1997,
389, 466.
9 (a) S. Kawahara, T. Uchimaru and S. Murata, Chem. Commun., 1999,
563; (b) A. K. Tong, S. Jockusch, Z. Li, H. R. Zhu, D. L. Akins, N. J.
Turro and J. Ju, J. Am. Chem. Soc., 2001, 123, 12923.
10 (a) K. Y. Peng, S. A. Chen and W. S. Fann, J. Am. Chem. Soc., 2001,
123, 11388; (b) M. S. Shchepinov and V. A. Korshun, Nucleos.,
Nucleot. Nucl. Acids, 2001, 20, 369.
11 T. Weil, E. Reuther and K. Müllen, Angew. Chem., Int. Ed., 2002, 41,
1900.
12 Y. Geerts, H. Quante, H. Platz, R. Mahrt, M. Hopmeier, A. Böhm and
K. Müllen, J. Mater. Chem., 1998, 8, 2357.
13 (a) T. Förster, Ann. Phys., 1948, 2, 55; (b) T. Förster, Z. Naturforsch.,
Teil A, 1949, 4, 321.
14 B. Weib Van Der Meer, G. Coker III and S. Y. Simon Chen, Resonance
Energy Transfer, Theory and Data, VCH, Weinheim, 1994.
15 A. Böhm, H. Arms, G. Henning and P. Blaschka, US Pat., 6,184,378,
2001.
Fig. 5 Diagram illustrating the FRET efficiencies between chromophores in
1. These calculations were made using model dendrimers 7, 12 and 14, and
the acceptor-lacking counterparts 3 and 6. *The 79% FRET from D1 to Ac
is an upper limit.
16 H. Quante, P. Schlichting, R. Ulrike, Y. Geerts and K. Müllen,
Macromol. Chem. Phys., 1996, 197, 4029.
17 L. A. J. Chrisstoffels, A. Adronov and J. M. J. Fréchet, Angew. Chem.,
Int. Ed., 2000, 39, 2163.
CHEM. COMMUN., 2002, 2605–2607
2607