Montero, H. Wessel, H. W. Roesky, M. Teichert and I. Uson,
Angew. Chem., 1997, 109, 644; M. L. Montero, H. Wessel,
H. W. Roesky, M. Teichert and I. Uson, Angew. Chem., Int. Ed.
Engl., 1997, 36, 629; (c) R. J. Wehmschulte, J. J. Ellison,
K. Ruhlandt-Senge and P. P. Power, Inorg. Chem., 1994, 33, 6300;
(d ) C. Eaborn, I. B. Gorrell, P. B. Hitchcock, J. D. Smith and
K. Tavakkoli, Organometallics, 1994, 13, 4143; (e) C. Eaborn,
S. M. El-Hamruni, M. S. Hill, P. B. Hitchcock, M. Hopman,
A. L. Gouic and J. D. Smith, J. Organomet. Chem., 2000, 597, 9.
2 (a) J. H. Ahn, M. J. Joung, N. M. Yoon, D. C. Oniciu and
A. R. Katritzky, J. Org. Chem., 1999, 64, 488; (b) M. J. Joung,
J. H. Ahn and N. M. Yoon, J. Org. Chem., 1996, 61, 4472;
(c) J. Ishikawa, K. Inone and M. Itoh, J. Organomet. Chem., 1998,
552, 303; (d ) M. Itoh, Catal. Surv. Jpn., 1999, 3, 61.
3 (a) K. B. Starowieyski, A. Chwojnowski and Z. Kusmierek,
J. Organomet. Chem., 1980, 192, 147; (b) G. Bahr, P. Burba,
H. Lehmkuhl, K. Ziegler, Methoden der Organische Chemie
Metallorganische Verbindung, vol. XIII/4, Georg Thieme Verlag,
Stuttgart, p. 161.
4 J. A. R. Schmidt and J. Arnold, J. Am. Chem. Soc., 2001, 123, 8424.
5 (a) G. R. Giesbrecht, A. Shafir and J. Arnold, Chem. Commun.,
2000, 2135; (b) J. A. R. Schmidt, S. A. Chmura and J. Arnold,
Organometallics, 2001, 20, 1062.
Anal. calc. for C36H41N3AlLi (549.66): C, 78.67; H, 7.52; N,
7.64. Found: C, 78.14; H, 7.85; N, 7.95%.
3: H NMR (C6D6): δ 0.07 (s, 27 H, SiMe3), 0.78 (m, 6 H,
1
CH3), 0.89 (m, 6 H, CH3), 2.30–2.62 (m, 6 H, CH2CH2), 1.96
(m, 6 H, CH2CH2), 3.30 (m, 2 H, CH). 13C NMR (C6D6): δ 0.4
(SiMe3), 18.2, 18.4, 19.4, 19.6 (CH3), 48.0 (CH), 49.5, 49.7, 54.1,
7
54.3 (CH2CH2), 93.7, 94.1 (CSiMe3), 113.5 (Al–C). Li NMR
(C6D6, 194 MHz): δ 2.33. IR (Nujol, KBr): ν = 2060, 1948 cmϪ1
.
Anal. calc. for C27H53N3AlLiSi3: C, 60.29; H, 9.93; N, 7.81.
Found: C, 59.42; H, 10.30; N, 8.05%.
X-Ray structural analyses for 1 and 2
A fragment of a colorless block of 1 or 2 was mounted in a
glass capillary. Data were collected on a Siemens Smart dif-
fractometer. Data were integrated by the program SAINT14 to
a maximum 2θ value of 49.4Њ. The structure was solved by
direct methods15 and expanded using Fourier techniques.16 The
nonhydrogen atoms were refined anisotropically. The three
hydrogen atoms bound to the aluminium ion were refined
isotropically, while the rest were included in fixed positions.
6 D. J. Linton, P. Schooler and A. E. H. Wheatley, Coord. Chem. Rev.,
2001, 223, 53.
7 E. Zintl and A. Harder, Z. Phys. Chem., 1935, 28, 478.
8 A. Sklar and B. Post, Inorg. Chem., 1967, 6, 669.
9 W. Zheng, N. C. Mösch-Zanetti, H. W. Roesky, M. Hewitt,
F. Cimpoesu, T. R. Schneider, A. Stasch and J. Prust, Angew. Chem.,
2000, 112, 3229; W. Zheng, N. C. Mösch-Zanetti, H. W. Roesky,
M. Hewitt, F. Cimpoesu, T. R. Schneider, A. Stasch and J. Prust,
Angew. Chem., Int. Ed., 2000, 39, 3099.
10 M. Geissler, J. Kopf, B. Schubert, E. Weiss, E. Eeugebauer and
P. V. Schleyer, Angew. Chem., 1987, 99, 569; M. Geissler, J. Kopf,
B. Schubert, E. Weiss, E. Eeugebauer and P. V. Schleyer, Angew.
Chem., Int. Ed. Engl., 1987, 26, 587.
11 B. Goldfuss, P. V. Schleyer and F. Hampel, J. Am. Chem. Soc., 1997,
119, 1072.
12 DFT calculations were carried out using the TITAN software
package (Wavefunction Inc., Irvine, CA) using Becke’s 3 Parameter/
HF ϩ Slater ϩ Becke88 ϩ VWN ϩ LYP (B3LYP) method and the
Gaussian basis set 6-31G**.
13 Aluminium complexes incorporating pendant neutral tacn ligands
were described recently, see (a) D. A. Robson, L. H. Rees,
P. Mountford and M. Schroder, Chem. Commun., 2000, 1269;
(b) D. A. Robson, S. Y. Bylikin, M. Cantuel, N. A. H. Male,
L. H. Rees, P. Mountford and M. Schroder, J. Chem. Soc.,
Dalton Trans., 2001, 157.
Crystal data for 1. C12H29N3LiAl, M = 249.30, crystal dimen-
sions 0.32 × 0.28 × 0.13 mm, monoclinic, space group P21/n,
a = 9.1950(1), b = 13.4305(3), c = 13.0959(3) Å, β = 106.265(1)Њ,
V = 1552.53(5) Å3, Z = 4, dcalc = 1.067 g cmϪ3; F(000) = 552.00,
λ = 0.71069 Å, T = 139 K, µ(Mo-Kα) = 1.15 cmϪ1, R1 = 0.0590,
wR2 = 0.0559. Of the 6935 reflections that were collected, 2678
were unique (Rint = 0.042).
Crystal data for 2. C36H41N3AlLi, M = 549.66, crystal dimen-
sions 0.34 × 0.22 × 0.18 mm, monoclinic, space group P21/c,
a = 8.3268(4), b = 18.0244(9), c = 22.140(1) Å, β = 99.666(1)Њ,
V = 3275.7(2) Å3, Z = 4, dcalc = 1.114 g cmϪ3, F(000) = 1176.00,
µ(Mo-Kα) = 0.89 cmϪ1, T = 130 K, 2θmax = 49.4Њ, R1 = 0.0672,
wR2 = 0.0534. Of the 14627 reflections collected, 5617 were
unique (Rint = 0.048).
CCDC reference numbers 173850 (1) and 173851 (2).
lographic data in CIF or other electronic format.
14 Saint: SAX Area-detector integration program, V4.024, Siemens
Industrial Automation, Inc., Madison, WI, 1995.
15 SIR92: A. Altomare, M. C. Burla, M. Camalli, M. Cascarano,
C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr.,
1993, 26, 343.
Acknowledgements
Financial support of this work by the NSF is gratefully
acknowledged.
16 DIRDIF92: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P.
Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits,
C. Smykalla, The DIRECT program system, Technique report of
the Crystallography Laboratory, University of Nijmegen, The
Netherlands, 1992.
References and notes
1 (a) A. Heine and D. Stalke, Angew. Chem., 1992, 104, 941; A. Heine
and D. Stalke, Angew. Chem., Int. Ed. Engl., 1992, 31, 854; (b) M. L.
17 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
2994
J. Chem. Soc., Dalton Trans., 2002, 2992–2994