T. C. Maier, W. U. Frey, J. Podlech
SHORT COMMUNICATION
H, aryl-CH), 7.86 (d, J ϭ 9.8 Hz, 1 H, NHLeu) ppm. 13C NMR
(CDCl3, 125 MHz): δ ϭ 21.5, 23.2 (C-δLeu), 25.0 (C-γLeu), 26.2 (C-
γPro), 30.6 (C-βPro), 42.4 (C-βLeu), 43.5 (C-αGly), 45.1 (C-αLeu), 47.1
(C-δPro), 59.5 (C-4), 60.6 (C-αPro), 65.6 (C-3), 126.5, 128.7, 129.1
(aryl-C), 136.8 (aryl-Cipso), 168.5, 169.5, 176.5 (CϭO) ppm. MS
which the peptide chain enters and leaves the turn mimetic)
is 185.3°, demonstrating the almost perfect turn conforma-
tion of the substrate.[43]
(EI, 70 eV): m/z (%) ϭ 386 [Mϩ], 70 [C4H7NHϩ]. HRMS (EI,
Conclusion
12
70 eV):
C
21
1H3014N416O3: calcd. 386.2317; found 386.2317.
C21H30N4O3 (386.5): calcd. C 65.26, H 7.82, N 14.50; found C
64.95, H 7.78, N 14.33.
Most published turn mimetics do not allow for a flexible
positioning of side chains in the turn area. The substrates
B presented here carry up to three residues which perfectly
mimic a peptide in the turn region. This provides for further
flexibility in the construction and optimization of possibly
biologically active compounds.[44,45] The fact that no central
hydrogen bond is needed to stabilize the turn conformation
gives further possibilities for variation. It is feasible that
the peptide backbone, which usually supplies the hydrogen
bonds, is not even essential in the termini of the turn region.
Investigations to elucidate the scope of the accessible turn
mimics and to incorporate this and similar substrates in
longer peptide chains are now in progress.
Acknowledgments
The support of Prof. Dr. V. Jäger and the help of Dr. R. E. Dunmur
in the final preparation of the manuscript is gratefully acknow-
ledged. This work was supported by the Fonds der Chemischen
Industrie, the Deutsche Forschungsgemeinschaft, the Landesgradu-
iertenförderung Baden-Württemberg (stipend to T. C. M.), BASF
AG and Degussa AG (donation of chemicals).
[1]
J. A. Smith, L. G. Pease, Rev. Biochem. 1980, 8, 315Ϫ399.
[2]
J. S. Richardson, Adv. Protein Chem. 1981, 34, 168Ϫ339.
[3]
G. D. Rose, L. M. Gierasch, J. A. Smith, Adv. Protein Chem.
1985, 37, 1Ϫ109.
Methods Org. Chem. (Houben-Weyl), vol. E22 (‘‘Synthesis of
[4]
Peptides and Peptidomimetics’’) (Eds.: M. Goodman, A. Felix,
L. Moroder, C. Toniolo), Thieme, Stuttgart, 2001.
K. Hallenga, G. van Binst, A. Scarso, A. Michel, M. Knappen-
Experimental Section
[5]
Synthesis of Turn Mimic 1. Method A: The protected peptide ana-
log 5 (30 mg, 45 µmol) in CH2Cl2 (5 mL) was added to polymer-
bound TAEA (1.00 g, 700 µmol) and stirred for about 72 h at room
temp. (the reaction was monitored by TLC). The mixture was then
filtered through a sintered-glass frit and the solvent was removed
in a rotary evaporator. The resulting clear oil was chilled to 0 °C,
cold methanolic NH3 (2 mL, ca. 7.5 ) was added and the mixture
was stirred for 16 h whilst warming to room temp. The volatile
material was removed in a rotary evaporator yielding a clear oil
which slowly crystallized. Yield: 16 mg, 92%. Method B: The pro-
tected peptide analog 5 (30 mg, 0.045 mmol) and TAEA (135 µL,
900 µmol) in CH2Cl2 (1 mL) were stirred for about 30 min at room
temp.; CH2Cl2 was then added and the solution was extracted with
brine (three times), buffer (once; 13.1 g Na2HPO4, 40.7 g
NaH2PO4·2H2O in 200 mL H2O) and brine (once), and then dried
with MgSO4. The solvent was removed in a rotary evaporator giv-
ing a clear oil which was chilled to 0 °C. Cold methanolic NH3
(2 mL, ca. 7.5 ) was added and the mixture was stirred for 16 h
whilst warming to room temp. The volatile material was removed
in a rotary evaporator yielding a clear oil which slowly crystallized.
Yield: 14 mg, 81%.
berg, C. Dremier, J. Brison, J. Dirkx, FEBS Lett. 1980, 119,
47Ϫ52.
[6]
D. F. Veber, R. M. Freidinger, D. S. Perlow, W. J. Paleveda, Jr.,
F. W. Holly, R. G. Strachan, R. F. Nutt, B. H. Aryson, C.
Homnick, W. C. Randall, M. S. Glitzer, R. Saperstein, R.
Hirschmann, Nature 1981, 292, 55Ϫ58.
J. Rivier, J. Spiess, M. Thorner, W. Vale, Nature 1982, 300,
276Ϫ278.
D. W. Urry, R. Walter, Proc. Natl. Acad. Sci. U. S. A. 1971,
68, 956Ϫ958.
R. M. Freidinger, D. F. Veber, D. S. Perlow, J. R. Brooks, R.
[7]
[8]
[9]
Saperstein, Science 1980, 210, 656Ϫ658.
[10]
J. B. Ball, P. F. Alewood, J. Mol. Recognit. 1990, 3, 55Ϫ64.
[11]
See as well: G. Müller, G. Hessler, H. Y. Decornez, Angew.
Chem. Int. Ed. 2000, 39, 894Ϫ896.
L. K. Srivastava, S. B. Bajwa, R. L. Johnson, R. K. Mishra, J.
Neurochem. 1988, 50, 960Ϫ968.
K.-L. Yu, G. Rajakumar, L. K. Srivastava, R. K. Mishra, R.
L. Johnson, J. Med. Chem. 1988, 31, 1430Ϫ1436.
U. Sreenivasan, R. K. Mishra, R. L. Johnson, J. Med. Chem.
1993, 36, 256Ϫ263.
R. K. Mishra, S. Chiu, P. Chiu, C. P. Mishra, Meth. Find.
[12]
[13]
[14]
[15]
Exptl. Clin. Pharmacol. 1983, 5, 203Ϫ233.
S. Hanessian, G. McNaughton-Smith, H.-G. Lombart, W. D.
[16]
1: Colorless crystals, m.p. 199Ϫ201 °C. [α]2D0 ϭ Ϫ36.5 (c ϭ 1,
CHCl3). IR (KBr): ν˜ ϭ 3418, 3253, 2940, 1755, 1670, 1635, 1520
cmϪ1. 1H NMR (CDCl3, 500 MHz): δ ϭ 0.86 (d, J ϭ 6.7 Hz, 3 H,
H-δLeu), 0.91 (d, J ϭ 6.6 Hz, 3 H, H-δLeu), 1.32 (ddd, Jgem ϭ 13.9,
J ϭ 9.2, J ϭ 4.7 Hz, 1 H, H-βLeu), 1.56 (dseptd, J ϭ 9.2, J ϭ 6.6,
J ϭ 5.1 Hz, 1 H, H-γLeu), 1.65Ϫ1.76 (m, 2 H, H-γPro), 1.78 (ddd,
Lubell, Tetrahedron 1997, 53, 12789Ϫ12854.
[17]
P. Gillespie, J. Cicariello, G. L. Olson, Biopolymers 1997, 43,
191Ϫ217.
[18]
T. Hoffmann, H. Lanig, R. Waibel, P. Gmeiner, Angew. Chem.
Int. Ed. 2001, 40, 3361Ϫ3364.
[19]
´
´
E. Alonso, F. Lopez-Ortiz, C. del Pozo, E. Peralta, A. Macıas,
´
Jgem ϭ 13.9, J ϭ 10.7, J ϭ 5.1 Hz, 1 H, H-βLeu), 1.88 (dddd, Jgem ϭ
J. Gonzalez, J. Org. Chem. 2001, 66, 6333Ϫ6338.
[20]
[21]
[22]
J. Podlech, D. Seebach, Liebigs Ann. 1995, 1217Ϫ1228.
J. Podlech, D. Seebach, Helv. Chim. Acta 1995, 78, 1238Ϫ1246.
G. Guichard, S. Abele, D. Seebach, Helv. Chim. Acta 1998,
81, 187Ϫ206.
12.9, J ϭ 7.5, J ϭ 5.8, J ϭ 5.7 Hz, 1 H, H-βPro), 2.15 (dddd, Jgem ϭ
12.9, J ϭ 9.2, J ϭ 7.5, J ϭ 7.5 Hz, 1 H, H-βPro), 2.23 (br. s, 1 H,
NHPro), 2.90 (ddd, Jgem ϭ 10.0, J ϭ 6.4, J ϭ 5.9 Hz, 1 H, H-δPro),
3.00 (ddd, Jgem ϭ 10.0, J ϭ 7.1, J ϭ 7.0 Hz, 1 H, H-δPro), 3.09 (dd,
J ϭ 4.1, J ϭ 2.2 Hz, 1 H, H-3), 3.26 (d, Jgem ϭ 17.1 Hz, 1 H, H-
[23]
[24]
[25]
[26]
[27]
J. Podlech, Synlett 1996, 582Ϫ584.
J. Podlech, M. R. Linder, J. Org. Chem. 1997, 62, 5873Ϫ5883.
J. Podlech, S. Steurer, Synthesis 1999, 650Ϫ654.
M. R. Linder, J. Podlech, Org. Lett. 1999, 1, 869Ϫ871.
J. Podlech, M. R. Linder, T. C. Maier, Targets Heterocycl. Syst.
2000, 4, 269Ϫ291.
αGly), 3.82 (dd, J ϭ 9.2, J ϭ 5.5 Hz, 1 H, H-αPro), 4.27 (d, Jgem
ϭ
17.1 Hz, 1 H, H-αGly), 4.45 (dddd, J ϭ 10.7, J ϭ 9.8, J ϭ 4.7, J ϭ
4.1 Hz, 1 H, H-αLeu), 4.60 (d, J ϭ 2.2 Hz, 1 H, H-4), 5.68, 6.47 (br.
s, 2 H, CONH2), 7.28Ϫ7.31 (m, 2 H, aryl-CH), 7.32Ϫ7.40 (m, 3
2688
Eur. J. Org. Chem. 2002, 2686Ϫ2689