A. Nandi, P. Chattopadhyay / Tetrahedron Letters 43 (2002) 5977–5980
5979
Acknowledgements
11. Nandi, A.; Mukhopadhyay, R.; Chattopadhyay, P. J.
Chem. Soc., Perkin Trans. 1 2001, 3346–3351.
12. Ghosh, K.; Ghosh, A. K.; Ghatak, U. R. J. Chem. Soc.,
Chem. Commun. 1994, 629–630.
We are grateful to DST (Government of India) for
financial support, CSIR for a JRF to A.N., and Profes-
sor U. R. Ghatak for his suggestions and advice. The
authors thank Dr B. Achari of our Institute for his
valuable advice regarding NMR analyses and Dr R.
Mukhopadhyay for providing 1H–1H COSY and
decoupling spectra. We are indebted to Dr A. Bhat-
tacharjya of our Department for his interest in this
work.
13. Diisopropylidination of methyl
D-mannopyranoside and
its selective hydrolysis to diol 1 was realized according to
the reported procedures.14,15
14. Evans, M. E. Methods Carbohydrate Chem. 1980, 8,
169–171.
15. Gelas, J.; Horton, D. Carbohydrate Res. 1978, 67, 371–
387.
16. The conversion of primary alcohol 1 to the respective
silyl derivative 2 was achieved by stirring with TBDM-
SCl, imidazole in anhydrous CH2Cl2 for 1 h at 0°C (cf.
Malmstro¨m, J.; Gupta, V.; Engman, L. J. Org. Chem.
1998, 63, 3318–3323).
References
17. Chenede, A.; Pothier, P.; Sollogoub, M.; Fairbanks, A.
J.; Sinay¨, P. Chem. Commun. 1995, 1373–1374.
18. Aurrecoechea, J. M.; Lo´pez, B.; Arrate, M. J. Org. Chem.
2000, 65, 6493–6501.
19. Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104,
2321–2323.
20. Beckwith, A. L. J.; Schisser, C. H. Tetrahedron 1985, 41,
3925–3942.
21. Bowman, W. R.; Cloonan, M. O.; Krintel, S. L. J. Chem.
Soc., Perkin Trans. 1 2001, 2885–2902.
22. Satisfactory elemental analyses and spectroscopic data
were obtained for all new compounds. Selected data for
8a: mp: 94–95°C; [h]2D9 +52.7 (c 1.1, CHCl3); 1H NMR
(300 MHz, CDCl3): l=1.33 (3H, s, CH3), 1.38 (3H, s,
CH3), 1.60–1.71 (1H, m, Ha of H2-12), 2.29–2.38 (1H, m,
Hb of H2-12), 2.73–2.80 (1H, brt, Ha of H2-11), 3.22–3.34
(1H, t-like, overlapped by OCH3 signal, Hb of H2-11),
1. (a) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93,
1897–1909; (b) Scheuer, P. J. Tetrahedron 1994, 50, 3–18;
(c) Alvarez, E.; Candenas, M.-L.; Pe´rej, R.; Ravelo, J. L.;
Martin, J. D. Chem. Rev. 1995, 95, 1953–1980; (d)
Dechraoui, M.-Y.; Naar, J.; Pauillac, S.; Legrand, A.-M.
Toxicon 1999, 37, 125–143.
2. (a) Pohlmann, J.; Sabater, C.; Hoffmann, H. M. R.
Angew. Chem., Int. Ed. Engl. 1998, 37, 633–635; (b)
Fujiwara, K.; Mishima, H.; Amano, A.; Tokiwano, T.;
Murai, A. Tetrahedron Lett. 1998, 39, 393–396; (c) Oishi,
T.; Nagumo, Y.; Hirama, M. Chem. Commun. 1998,
1041–1042; (d) Stefinovic, M.; Snieckus, V. J. Org. Chem.
1998, 63, 2808–2809; (e) Martin, M.; Afonso, M. M.;
Galindo, A.; Palenzuela, J. A. Synlett 2001, 117–119.
3. Chattopadhyay, P.; Mukherjee, M.; Ghosh, S. Chem.
Commun. 1997, 2139–2140.
4. Sudha, A. V. R. L.; Nagarajan, M. Chem. Commun.
3.34 (3H s, OCH3), 3.47–3.52 (1H, dd, J4,4a=6.6, J4a,12a
=
=
1996, 1359–1360.
9.9 Hz, H-4a), 3.59–3.68 (1H, dt, Jb12a,12H=9.9, J4a,12a
5. Nicolaou, K. C.; Yang, Z.; Shi, G.-Q.; Gunzner, J. L.;
Agrios, K. A.; Ga¨rtner, P. Nature 1998, 392, 264–269.
6. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.;
Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–
1993.
7. Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.;
Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294,
1904–1907.
8. (a) For functionalized medium sized carbocyclic rings,
from carbohydrates, through radical cyclization, see
Marco-Contelles, J.; de Opazo, E. Tetrahedron Lett.
2000, 41, 5341–5345 and References cited therein; (b)
Medium sized cyclic ethers, from carbohydrates, through
radical cyclization, see Leeuwenburgh, M. A.; Litzens, R.
E. J. N.; Codee, J. D. C.; Overkleeft, H. S.; Van der
Marel, G. A.; Van Boom, J. H. Org. Lett. 2000, 2,
1275–1277 and References cited therein.
9. For medium sized rings through RCM from carbohy-
drates see (a) Clark, J. S.; Hamelin, O.; Hufton, R.
Tetrahedron Lett. 1998, 39, 8321–8324; (b) Dirat, O.;
Vidal, T.; Langlois, Y. Tetrahedron Lett. 1999, 40, 4801–
4802; (c) Holt, D. J.; Barker, W. D.; Jenkins, P. R.;
Panda, J.; Ghosh, S. J. Org. Chem. 2000, 65, 482–493 and
References cited therein; (d) Oishi, T.; Kosaka, M.;
Hirama, M. Chem. Commun. 2001, 381–382.
9.9, Ja12a,12H=6.3 Hz, H-12a), 4.06 (1H, d, J=5.7 Hz,
H-3), 4.21–4.25 (1H, t, J=6 Hz, H-4), 4.73 (1H, s, H-2),
4.87 (1H, d, J=14 Hz, Ha of ArCH2), 5.14 (1H, d, J=14
Hz, Hb of ArCH2), 7.01–7.26 (4H, m, Ar-H); 13C NMR
(75 MHz, CDCl3): l 26.60 (CH3), 28.12 (CH3), 29.66
(CH2), 35.20 (CH2), 55.34 (OCH3), 67.50 (CH), 73.81
(CH2), 75.83 (CH), 77.69 (CH), 78.47 (CH), 98.19 (CH),
109.60(C), 126.79 (CH), 128.34 (CH), 128.55 (CH),
131.74 (CH), 136.23 (C), 142.35 (C). MS (EI) m/z 320
(M+, 10%); 8b: mp: 90–91°C; [h]D29 +22.9 (c 0.8, CHCl3);
1H NMR (300 MHz, CDCl3): l=1.33 (3H, s, CH3), 1.40
(3H, s, CH3), 1.60–1.67 (1H, m, Ha of H2-12), 2.28–2.32
(1H, m, Hb of H2-12), 2.71–2.75 (1H, brt, Ha of H2-11),
3.14–3.21 (1H, t, J=12 Hz, Hb of H2-11), 3.34 (3H, s,
OCH3), 3.46–3.52 (1H, dd, J4,4a=6.6, J4a,12a=9.9 Hz,
H-4a), 3.56–3.67 (1H, dt, Jb12a,12H=9.9,
J4a,12a=9.9,
Ja12a,12H=6.3 Hz, H-12a), 3.77 (3H, s, OCH3), 4.06 (1H,
d, J=5.7 Hz, H-3), 4.21–4.25 (1H, t, J=6 Hz, H-4), 4.73
(1H, s, H-2), 4.81 (1H, d, J=14.5 Hz, Ha of Ar-CH2),
5.10 (1H, d, J=14.5 Hz, Hb of Ar-CH2), 6.56 (1H, s,
Ar-H), 6.77 (1H, dd, J=8.4, 2.4 Hz Ar-H), 7.05 (1H, d,
J=8.3 Hz, Ar-H); 13C NMR (75 MHz, CDCl3): l 26.57
(CH3), 28.16 (CH3), 28.86 (CH2), 35.51 (CH2), 55.34
(OCH3), 55.66 (OCH3), 67.51 (CH), 73.79 (CH2), 75.84
(CH), 77.95 (CH), 78.45 (CH), 98.21 (CH), 109.60 (C),
113.61 (CH), 113.68 (CH), 132.81 (CH), 134.36 (C),
137.49 (C), 158.45 (C) ppm. MS (EI) m/z 350 (M+, 73%);
8c: mp: 56–58°C; [h]2D9 +15.2 (c 1.6, CHCl3); 1H NMR
(300 MHz, CDCl3), l=1.33 (3H, s, CH3), 1.39 (3H, s,
10. (a) Inoue, M.; Sasaki, M.; Tachibana, K. J. Org. Chem.
1999, 64, 9416–9429; (b) Takai, S.; Ploypradith, P.;
Hamazima, A.; Kira, K.; Isobe, M. Synlett 2002, 588–
592.