4500
K. Urgin et al. / Electrochimica Acta 55 (2010) 4495–4500
responding route is indicated by bold lines in Scheme 4 (steps 1,
2a, 3a), where electrogenerated Ni(0) reacts rapidly, hence pref-
erentially, with R-PyrCl. After that, one or several steps involving
ArX, promoted by an excess of this compound, yield the aimed cou-
pling product. If the aryl halide is not reactive enough (no excess or
unactivated compound), the intermediate pyridazine nickel com-
plex(es) will lead to other products, for example to the pyridazinyl
dimer R-Pyr-Pyr-R (ways 2a, 3c) which is obtained in the absence
of ArX [49].
[4] T. Matsuda, T. Aoki, T. Koshi, M. Ohkuchi, H. Shigyo, Bioorg. Med. Chem. Lett.
11 (2001) 2373.
[5] T. Hu, B.A. Stearns, B.T. Campbell, J.M. Arruda, C. Chen, J. Aiyar, R.E. Bezverkov, A.
Santini, H. Schaffhauser, W. Liu, S. Venkatraman, B. Munoz, Bioorg. Med. Chem.
Lett. 14 (2004) 2031.
[6] S. Moreau, P. Coudert, C. Rubat, D. Vallee-Goyet, D. Gardette, J.-C. Gramain, J.
Couquelet, Bioorg. Med. Chem. 6 (1998) 983.
[7] P.W. Harrison, G.B. Barlin, L.P. Davies, S.J. Ireland, P. Mátyus, M.G. Wong, Eur. J.
Med. Chem. 31 (1996) 651.
[8] A. Stehl, G. Seitz, K. Schulz, Tetrahedron 58 (2002) 1343.
[9] J.M. Contreras, I. Parrot, W. Sippl, Y.M. Rival, C.G. Wermuth, J. Med. Chem. 44
(2001) 2707.
Conversely, if the reaction is performed with a “too activated”
ArX (for instance an aryl iodide including an electron withdrawing
group), the ways 2a and 2b will be competitive and the symmetri-
cal biaryl Ar–Ar will be obtained in a larger ratio via the sequence
2b, 3d. This was actually observed in a reaction engaging 3-
18% with 4-iodoacetophenone, while iodobenzene or methyl-4-
bromobenzoate yielded 60 and 57% respectively. The route leading
to the cross-coupling product according to the sequence 1, 2b, 3b
in Scheme 4 does not seem to be considered as a predominant way.
[10] D.L. Boger, R.S. Coleman, J.S. Panek, D. Yohannes, J. Org. Chem. 49 (1984) 4405.
[11] U. Joshi, M. Pipelier, S. Naud, D. Dubreuil, Curr. Org. Chem. 9 (2005) 261.
[12] G.T. Manh, R. Hazard, A. Tallec, J.P. Pradere, D. Dubreuil, M. Thiam, L. Toupet,
Electrochim. Acta 47 (2002) 2833.
[13] H. Bakkali, C. Marie, A. Ly, C. Thobie-Gautier, J. Graton, M. Pipelier, S. Seng-
many, E. Léonel, J.Y. Nédélec, M. Evain, D. Dubreuil, Eur. J. Org. Chem. 12 (2008)
2156.
[14] M. Tisler, B. Stanovnik, Adv. Heterocycl. Chem. 49 (1990) 385 (Academic Press,
San Diego).
[15] R. Hoogenboom, G. Kickelbick, U.S. Schubert, Eur. J. Org. Chem. (2003) 4887.
[16] P.N.W. Baxter, J.-M. Lehn, G. Baum, D. Fenske, Chem. Eur. J. 6 (2000) 4510.
[17] S.-G. Lee, J.-J. Kim, H.-K. Kim, D.-H. Kweon, Y.-J. Kang, S.-D. Cho, S.-K. Kim, Y.-J
Yoon, Curr. Org. Chem. 8 (2004) 1463.
[18] M. Van der Mey, A. Hatzelmann, I.J. Van der Laan, G.J. Sterk, U. Thibaut, H.
Timmerman, J. Med. Chem. 44 (2001) 2511.
[19] W.J. Coates, A. McKillop, Synthesis (1993) 334.
4. Conclusions
[20] P. Coudert, J. Couquelet, P. Tronche, J. Heterocycl. Chem. 25 (1988) 799.
[21] D.K. Heldmann, J. Sauer, Tetrahedron Lett. 38 (1997) 5791.
[22] A. Turck, N. Plé, L. Mojovic, G. Quéguiner, Bull. Soc. Chim. Fr. 130 (1993) 488.
[23] T.L. Draper, T.R. Bailey, J. Org. Chem. 60 (1995) 748.
[24] I. Parrot, Y. Rival, C.G. Wermuth, Synthesis 7 (1999) 1163.
[25] A.J. Goodman, S.P. Stanforth, B. Tarbit, Tetrahedron 55 (1999) 15067.
[26] B.U.W. Maes, G.L.F. Lemière, R.A. Dommisse, K. Augustino, A. Haemers, Tetra-
hedron 56 (2000) 1777.
[27] S. Guery, I. Parrot, Y. Rival, C.G. Wermuth, Synthesis (2001) 699.
[28] B.U.W. Maes, J. Kosmrlj, G.L.F. Lemière, J. Heterocycl. Chem. 29 (2002) 535.
[29] I. Collins, J.L. Castro, L.J. Street, Tetrahedron Lett. 41 (2000) 781.
[30] S. Nara, J. Martinez, C.-G. Wermuth, I. Parrot, Synlett 19 (2006) 3185.
[31] F. Romero-Salguero, J.-M. Lehn, Tetrahedron Lett. 40 (1999) 859.
[32] L.A. Cuccia, E. Ruiz, J.-M. Lehn, J.-C. Homo, M. Schmutz, Chem. Eur. J. 8 (2002)
3448.
[33] G.Z. Zheng, Y. Mao, C.-H. Lee, J.K. Pratt, J.R. Koenig, R.J. Perner, M.D. Cowart, G.A.
Gfesser, S. McGaraughty, K.L. Chu, C. Zhu, H. Yu, K. Kohlhaas, K.M. Alexander,
C.T. Wismer, J. Mikusa, M.F. Jarvis, E.A. Kowaluk, A.O. Stewart, Bioorg. Med.
Chem. Lett. 13 (2003) 3041.
[34] C.G.V. Sharples, G. Karig, G.L. Simpson, J.A. Spencer, E. Wright, N.S. Millar, S.
Wonnacott, T. Gallager, J. Med. Chem. 45 (2002) 3235.
[35] J.Y. Nédelec, J. Périchon, M. Troupel, Top. Curr. Chem. 185 (1997) 141.
[36] A. Jutand, Chem. Rev. 108 (2008) 2300.
[37] C. Gosmini, S. Lasry, J.-Y. Nédélec, J. Périchon, Tetrahedron 54 (1998) 1289.
[38] C. Gosmini, J.-Y. Nédélec, J. Périchon, Tetrahedron Lett. 41 (2000) 5039.
[39] S. Sengmany, E. Léonel, F. Polissaint, J.-Y. Nédélec, M. Pipelier, C. Thobie-Gautier,
D. Dubreuil, J. Org. Chem. 72 (2007) 5631.
CV experiments allowed us to obtain significant information
about the electrochemical synthesis of arylpyridazines from aryl
halides and substituted chloropyridazines.
The reaction starts with the electroreduction of
a diva-
lent Ni-bpy complex. Oxidative addition of the chloropyridazine
carbon–halogen bond to the electrogenerated Ni0bpy complex is
faster than the analogous reaction involving the aryl halide.
We proposed some mechanistic considerations which enlighten
the formation of the aimed arylpyridazine and by-products. We
showed why the success of the reaction depends strongly on the
respective reactivities and amounts of each substrate. Particu-
larly, we explained why the yield of cross-coupling product can
be improved by addition of an excess of the aryl halide.
The exact nature of Ni complex implicated in the catalytic cycle
is not fully elucidated. We proved that pyridazine rings act as co-
ligands or competitive ligands of 2,2ꢀ-bipyridine and can (at least in
the case of the pyridazine) poison the catalyst. Complement works
are on course to obtain more accurate data on this subject.
Acknowledgements
[40] M. Troupel, Y. Rollin, O. Sock, G. Meyer, J. Périchon, New J. Chem. 10 (1986) 593.
[41] M.S. Mubarak, D.G. Peters, J. Electroanal. Chem. 507 (2001) 110.
[42] D. Donghi, G. D’Alfonso, M. Mauro, M. Panigati, P. Mercandelli, A. Sironi, P.
Mussini, L. D’Alfonso, Inorg. Chem. 47 (2008) 4243.
[43] M. Durandetti, M. Devaud, J. Périchon, New J. Chem. 20 (1996) 659.
[44] J.M. Savéant, E. Vianello, in: I.S. Longmuir (Ed.), Advances in Polarography, vol.
I, Pergamon Press, New York, 1960, p. 367.
K. Urgin thanks the Université Paris Est Créteil Val de Marne
(UPEC) for her PhD studentship. Thanks to Professor Michel Troupel
for helpful participation. The authors gratefully acknowledge the
ANR program FOLDAPSULES for financial support.
[45] R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706.
[46] N.-D. Sung, K.-S. Yun, T.-Y. Kim, K.-Y. Choi, M. Suh, J.-G. Kim, I.-H. Suh, J. Chin,
Inorg. Chem. Commun. 4 (2001) 377.
References
[47] T.T. Tsou, J.K. Kochi, J. Am. Chem. Soc. 101 (1979) 7547.
[48] D.G. Morrell, J.K. Kochi, J. Am. Chem. Soc. 97 (1975) 7262.
[49] D. Dubreuil, M. Pipelier, C. Thobie, J.-P. Pradere, E. Léonel, J.-Y. Nédélec,
S. Sengmany, T. Delaunay, A. Tabatchnik, International Patent Application,
WO/2008/012441 (2008).
[1] T. Yamada, Y. Nobuhara, H. Shimamura, K. Yoshihara, A. Yamaguchi, M. Ohki,
Chem. Pharm. Bull. 29 (1981) 3433.
[2] J. Easmon, G. Pürstinger, G. Heinisch, T. Roth, H.H. Fiebig, W. Holzer, W. Jäger,
M. Jenny, J. Hofmann, J. Med. Chem. 44 (2001) 2164.
[3] T. Matsuda, T. Aoki, T. Ohgiya, T. Koshi, M. Ohkuchi, H. Shigyo, Bioorg. Med.
Chem. 11 (2001) 2369.