high- and low-temperature phase X-ray diffraction pattern, so
the magnetic transition may accompany the structural phase
transition, and the phenomenon is similar to cases where some
heterocyclic thiazyl radicals undergo an abrupt magnetic/
structural phase transition with thermal hysteresis, which are
related to distortions of the p-stack arrangement.10,11 Previous
studies have shown that the magnetic coupling between
[Ni(mnt)2]2 anions is very sensitive to not only the inter-
molecular separation,2a but also the manner of overlap between
neighboring [Ni(mnt)2]2 anions.7,12 Several shorter contact
distances, such as Ni…Ni, Ni…S, S…S, S…N, S…C and
C…N, play important roles in the superexchange pathway due
to extensive electron delocalization in the [Ni(mnt)2]2 unit.13
Therefore, changes of the contact distance between neighboring
anions, which can arise from variation of the external pressure
or temperature, may lead to the sign of the magnetic coupling
constant (J) changing.
Fig. 2 Temperature dependence of cmT for 2 (inset: d(cmT)/dT versus T).
The solid line represents the best fit in the high temperature range according
to the Baker equation.
Financial support from the National Natural Science Founda-
tion (No. 29771017, No. 29831010), the State Education
Commission of China and the State Key Laboratory of
Structural Chemistry are gratefully acknowledged.
diamagnetic. When the temperature is increased from 2 K to 350
K, an identical curve was observed without hysteresis. Ob-
viously, a phase transition takes place around 93 K. The
transition temperature, 90 K, may be estimated from the d(cmT)/
dT vs. T plot (inset of Fig. 2). In the temperature range 93–350
K, an estimation was made by fitting cm data to the Baker
equation6 (applicable for a chain of s = 1/2 spin) derived from
a high-temperature series expansion. A fit of the data to the
equation6c gives g = 2.006 (fixed), J/kB = 14.61 K, TIP =
23.5 3 1024 emu with a final agreement factor R = 2.3 3 1024
[R = S(cmTobs 2 cmTcalc)2/S(cmTobs)2]. The fitting results in
the high temperature range are in agreement with those of
similar Ni(III) complexes.2c,7
It is possible that there exist spin-Peierls-like dimeric lattic
distortions8–10 in the low-temperature phase for 2. To measure
the crystal structural data in the low-temperature phase are
closely linked to explore the phase transition feature, however,
this attempt up to now has been unsuccessful. As an accessorial
measure, the variable-temperature X-ray diffraction (XRD)
experiments of 2 were carried out and are displayed in Fig. 3,
and the results show that there exist differences between the
Notes and references
‡ Crystal data: C20H11FN5NiS4, M = 527.29, monoclinic, space group P21/
c, a = 12.1500(4), b = 25.9523(6), c = 7.3397(3) Å, b = 101.74°, V =
2265.95(13) Å3, Z = 4, Dc = 1.546 g cm23, m(Mo-Ka) = 1.251 mm21, l
= 0.71073 Å. A crystal of dimensions 0.15 3 0.10 3 0.10 mm was selected
for indexing and intensity data collection at 298 K. w-Scans covering
reciprocal space up to qmax 25.05° with 99.8% completeness, total of 7854
reflections (4013 unique) with Rint = 0.0436. Structure solution SHELX-
97, full matrix least-squares based on F2 using SHELXL-97, final R =
0.062, wR
= 0.154. CCDC reference number 182194. See http://
other electronic format.
1 N. Robertson and L. Cronin, Coord. Chem. Rev., 2002, 227, 93.
2 (a) A. T. Coomber, D. Beljonne, R. H. Friend, J. L. Brédas, A. Charlton,
N. Robertson, A. E. Underhill, M. Kurmoo and P. Day, Nature, 1996,
380, 144; (b) A. E. Pullen, C. Faulmann, K. I. Pokhodnya, P. Cassoux
and M. Tokumota, Inorg. Chem., 1998, 37, 6714; (c) M. Uruichi, K.
Yakushi, Y. Yamashita and J. Qin, J. Mater. Chem., 1998, 8, 141.
3 (a) G. R. Lewis and I. Dance, J. Chem. Soc., Dalton Trans., 2000, 3176;
(b) M. Hobi, S. Zürcher, V. Gramlich, U. Burckhardt, C. Mensing, M.
Spahr and A. Tongi, Organometallics, 1996, 34, 5342.
4 (a) J. L. Xie, X. M. Ren, Y. Song, W. J. Tong, C. S. Lu, Y. G. Yao and
Q. J. Meng, Inorg. Chem. Commun., 2002, 5, 395; (b) J. L. Xie, X. M.
Ren, S. Gao and Q. J. Meng, Chem. Lett., 2002, 576; (c) J. L. Xie, X. M.
Ren, Y. Song, Y. Zou and Q. J. Meng, J. Chem. Soc., Dalton Trans.,
2002, 2868.
5 (a) S. B. Bulgarevich, D. V. Bren, D. Y. Movshovic, P. Finocchiaro and
S. Failla, J. Mol. Struct., 1994, 317, 147; (b) A. Davison and H. R. Holm,
Inorg. Synth., 1967, 10, 8.
6 (a) G. A. Baker, G. S. Rushbrooke and H. E. Gilbert, Phys. Rev., 1964,
135, A1272; (b) L. Deakin, A. M. Arif and J. S. Miller, Inorg. Chem.,
1999, 38, 5072; (c)
C = 1.0 + 5.7979916y + 16.902653y2 + 29.376885y3 + 29.832959y4
+ 14.036918y5
D
=
1.0 + 2.7979916y + + +
7.0086780y2 8.653644y3
4.5743114y4
y = J/2kT.
7 J. Nishijo, E. Ogura, J. Yamaura, A. Miyazaki, T. Enoki, T. Takano, Y.
Kuwatani and M. Iyoda, Solid State Commun., 2000, 116, 661.
8 T. Hasegawa, R. Kondo, S. Kagoshima, Y. Iwasa, T. Mochida, T.
Akutagawa and T. Nakamura, Synth. Met., 2001, 120, 991.
9 J. P. Cornelissen, J. H. van Diemen, L. R. Groeneveld, J. G. Haasnoot,
A. L. Spek and J. Reedijk, Inorg. Chem., 1992, 31, 198.
10 W. Fujita and K. Awaga, Science, 1999, 286, 261.
11 T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon, M. E. Itkis,
M. S. Mashuta, R. T. Oakley, G. W. Patenaude, R. W. Reed, J. F.
Richardson and H. Zhang, J. Am. Chem. Soc., 1998, 120, 352.
12 S. Alvarez, R. Vicente and R. Hoffmann, J. Am. Chem. Soc., 1985, 107,
6253.
Fig. 3 XRD powder patterns for 2 at different temperatures.
13 B. L. Ramakrishna, Inorg. Chim. Acta, 1986, 114, 31.
CHEM. COMMUN., 2002, 2346–2347
2347