and 1500 (aromatic), 1450 (C–H), 1390 and 1370 (CH3), 1250
(Ar–O–C), 1140 and 1110 (C–O), 1040 (Ar–O–C) and 800 (para
substituted aromatic); δH (300 MHz; CDCl3) 0.98–1.05 [12 H,
m, 2 × CH(CH3)2], 1.95 (3 H, s, CH3), 2.02 (3 H, s, CH3), 3.77 (6
H, s, 2 × OCH3), 4.21 [2 H, dsept, J 6.0 and 1.9, 2 × CH(CH3)2],
6.32 (1 H, d, J 8.3, Ar-H), 6.40–6.57 (4 H, m, 4 × Ar-H), 6.63 (1
H, dd, J 8.3 and 2.3, Ar-H), 7.19 (2 H, d, J 9.0, 2 × Ar-H), 7.78
(2 H, d, J 9.0, 2 × Ar-H); δC (75.5 MHz; CDCl3) 16.2 and 16.3
(CH3), 22.7 (CH3), 55.5 (OCH3), 73.3 and 73.4 (OCH), 108.0,
109.0, 117.2, 117.3, 129.3, 130.2, 130.3 and 134.4 (Ar-CH),
124.0, 124.3, 127.4, 129.4, 130.7, 130.9, 155.1, 155.2, 155.4 and
155.5 (Ar-C); m/z (FAB) 484 (Mϩ, 100), 400 (Mϩ Ϫ C6H12, 25),
279 (C18H15O2ϩ, 11), 43 (C3H7ϩ, 15%); m/z (EI) 484.2619 (Mϩ,
C32H36O4 requires 484.2613).
and 130.9 (Ar-CH); m/z (CI) 487.4/485.4 (M ϩ H, 100), 405.5
(Mϩ Ϫ Br, 50%); m/z (ES) 485.1689 (M ϩ H, C27H33O3Br
requires 485.1691).
Acknowledgements
We thank the EPSRC for studentships (to MS, GR/97311210
and RN, GR/98700139) and Dr H. Toms (QMUL) for
assistance and advice with the selective inversion experiments.
We thank Professor A. D. Bain (McMaster University, Canada)
for advice and for providing the CIFIT software, and the
University of London Intercollegiate Research Service
(ULIRS) for access to the AMX600 spectrometer. We also wish
to acknowledge the use of the EPSRC’s Chemical Database
Service at Daresbury.19
Cross coupling of 1,8-dibromo-2,7-diisopropoxynaphthalene 5
with 3-tert-butyl-4-methoxyphenylboronic acid 10
References
A mixture of 1,8-dibromo-2,7-diisopropoxynaphthalene 5 (1.0
g, 2.49 mmol), 3-tert-butyl-4-methoxyphenylboronic acid 10
(1.08 g, 5.22 mmol), barium hydroxide octahydrate (3.14 g, 9.94
mmol), water (5 cm3) and DMA (25 cm3) in a Rotaflo tube
was degassed using the freeze–pump–thaw method (cycles).
Tetrakis(triphenylphosphine)palladium() (0.286 g, 0.249
mmol) was added, the mixture was degassed as before (3 cycles)
and heated to 80 ЊC for 72 hours. After cooling to room tem-
perature, it was diluted with DCM (30 cm3), washed with 10%
HCl (5 × 30 cm3) and evaporated. The resulting solid was
purified by silica gel chromatography (petroleum ether : ethyl
acetate, 100 : 1 as the eluent) to give a first fraction which was a
mixture of 13c mono-substituted product and 13a doubly
coupled product. Further purification of this mixture was
achieved employing preparative HPLC using a Dynamax 60A
reverse phase C18 preparative column (internal diameter 41.5
mm) with methanol (100%) as the eluent with a flow rate of 10
ml minϪ1. The first fraction was 13c: δH (300 MHz; CDCl3) 0.96
and 1.01 [each 6 H, d, J 6.0, CH(CH3)2], 1.30 [18 H, s, 2 ×
C(CH3)3], 3.72 (6 H, s, 2 × OCH3), 4.16 [2 H, sept, J 6.0, 2 ×
CH(CH3)2], 6.33 (2 H, d, J 8.3, 2 × Ar-H), 6.45 (2 H, dd, J 8.3
and 1.9, 2 × Ar-H), 6.82 (2 H, d, J 1.9, 2 × Ar-H), 7.20 and 7.79
(each 2 H, d, J 8.7, 2 × Ar-H); δC (100 MHz; CDCl3) 22.6 and
22.7 [CH(CH3)2], 30.1 [C(CH3)2], 34.8 [C(CH3)3], 54.8 (OCH3),
73.2 [OCH(CH3)2], 110.3, 117.5, 129.1, 130.3 and 130.5
(Ar-CH), 127.5, 130.1, 130.6, 134.9, 155.1 and 155.9 (Ar-C);
m/z (FAB) 568 (Mϩ, 100%); m/z (EI) 568.3566 (Mϩ, C38H48O2
568.3721). The second fraction obtained from column chroma-
tography was 1-bromo-8-(3-tert-butyl-4-methoxyphenyl)-2,7-
diisopropoxynaphthalene 13b (0.32 g, 27%): mp 113 ЊC (Found:
C, 67.0; H, 6.8; Br, 16.2. C27H33O3Br requires C, 66.8; H, 6.85;
Br 16.5%); λmax (Et2O)/nm 310 (ε/dm3 molϪ1 cmϪ1 7,719), 245
(59,351) and 210 (31,098); νmax/cmϪ1 (KBr disc) 3000–2820
(CH3, CH), 1610 and 1500 (aromatic), 1390 and 1360 (CH3),
1230 (Ar–O–C), 1110 (C–O), 850 and 820 (para-substituted
aromatics) and 630 (C–Br); δH (300 MHz; CDCl3) 1.10, 1.14,
1.37 and 1.38 [each 3 H, d, J 6.0, CH(CH3)2], 1.40 [9 H, s,
C(CH3)3], 3.91 (3 H, s, OCH3), 4.38 and 4.61 [each 1 H, sept, J
6.0, CH(CH3)2], 6.88 (1 H, d, J 8.3, Ar-H), 6.99 (1 H, dd, J 8.3
and 2.3, Ar-H), 7.12 (1 H, d, J 8.7, Ar-H), 7.17 (1 H, d, J 2.3,
Ar-H), 7.23 (1 H, d, J 8.8, Ar-H), 7.74 and 7.75 (each 1 H, d, J
8.7, Ar-H); δC (75.5 MHz; CDCl3) 22.7 and 22.8 [CH(CH3)2],
30.3 [C(CH3)3], 35.1 [C(CH3)3], 55.5 (OCH3), 73.0 and 74.0
[CH(CH3)2], 110.5, 127.8, 129.0, 130.1, 133.3, 136.8, 154.9,
155.8 and 157.9 (Ar-C), 110.8, 116.2, 116.9, 129.4, 129.5, 130.4
1 (a) M. Steele, M. Watkinson and A. Whiting, Perkin Trans. 1, 2000,
588; (b) W. Cross, G. E. Hawkes, R. T. Kroemer, K. R. Liedl, T.
Loerting, R. Nasser, R. G. Pritchard, M. Steele, M. Watkinson and
A. Whiting, Perkin Trans. 2, 2000, 459; (c) R. G. Pritchard, M.
Steele, M. Watkinson and A. Whiting, Tetrahedron Lett., 2000, 41,
6915; (d ) N. C. Edge, J .J. James, C. A. McAuliffe, B. Beagley, N.
Jaiboon, M. Thorpe, M. Watkinson, A. Whiting and D. Wright,
Tetrahedron, 1996, 52, 10193; (e) M. Watkinson, A. Whiting and C.
A. McAuliffe, J. Chem. Soc., Chem. Commun., 1994, 2141.
2 R. L. Clough and J. D. Roberts, J. Am. Chem. Soc., 1976, 98, 1018.
3 H. O. House, J. T. Holt and D. VanDerveer, J. Org. Chem., 1993, 58,
7516.
4 (a) R. D. Wilson, Tetrahedron, 1958, 3, 236; (b) R. D. Wilson,
J. Chem. Soc., 1965, 3304; (c) F. Bell, J. A. Gibson and R. D. Wilson,
J. Chem. Soc., 1956, 2335.
5 (a) T. Watanabe, N. Miyaura and A. Suzuki, Synlett., 1992, 207; (b)
M. G. Johnson and R. J. Foglesong, Tetrahedron Lett., 1997, 38,
7001; (c) J. C. Anderson, H. Namli and C. A. Roberts, Tetrahedron,
1997, 53, 15123.
6 N. Tanaka and T. Kasai, Bull. Chem. Soc. Jpn., 1981, 54, 3020.
7 C. K. Mihir, K. T. Abu, P. K. Bhisma, D. Deepa and K. Wancydora,
Tetrahedron Lett., 1998, 39, 8163.
8 L. Hegedus, B. Lipshutz, H. Nozoki, M. Reetz, P. Rittmeyer, K.
Smith, F. Totter and H. Yamamoto, Organometallics in Synthesis: A
Manual, Wiley, Chichester, 1995.
9 D. R. Coulson, Inorg. Synth., 1972, 13, 121.
10 T. Beringhelli, G. D’Alfonso, H. Molinari, G. E. Hawkes and K. D.
Sales, J. Magn. Reson., 1988, 80, 45.
11 G. Robinson, P. W. Kuchel, B. E. Chapman, D. M. Doddrell and
M. G. Irving, J. Magn. Reson., 1985, 63, 314.
12 (a) M. S. Silver, M. I. Joseph and D. I. Hoult, J. Magn. Reson., 1984,
59, 347; (b) R. Freeman, Chem. Rev., 1991, 91, 1397.
13 A. D. Bain and J. A. Cramer, J. Magn. Reson., Ser. A, 1996, 118, 21.
14 D. R. Muhandiram and R. E. D. McClung, J. Magn. Reson., 1987,
71, 187.
15 K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G.
Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L.
Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A.
Pople, Gaussian, Inc., Pittsburgh PA, 1998.
16 J. B. Collins, P. V. R. Schleyer, J. S. Binkley and J. A. Pople, J. Chem.
Phys., 1976, 64, 5142.
17 F. Cozzi, M. Cinquini, R. Annuziata and J. S. Siegel, J. Am. Chem.
Soc., 1993, 115, 5330.
18 J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980,
102, 939.
19 (a) D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf.
Comput. Sci., 1996, 36, 746; (b) F. H. Allen and O. Kennard, Chem.
Des. Autom. News, 1993, 8, 1–31.
J. Chem. Soc., Perkin Trans. 2, 2002, 1510–1519
1519