Biochemistry
ARTICLE
’ ASSOCIATED CONTENT
(7) Oliva, B., O’Neill, A., Wilson, J. M., O’Hanlon, P. J., and Chopra,
I. (2001) Antimicrobial properties and mode of action of the pyrrothine
holomycin. Antimicrob. Agents Chemother. 45, 532–539.
(8) Ireland, D. C., Clark, R. J., Daly, N. L., and Craik, D. J. (2010)
Isolation, sequencing, and structure-activity relationships of cyclotides.
J. Nat. Prod. 73, 1610–1622.
S
Supporting Information. Figures S1ꢀS8 and Table S1.
b
This material is available free of charge via the Internet at http://
pubs.acs.org.
(9) Newkirk, T. L., Bowers, A. A., and Williams, R. M. (2009)
Discovery, biological activity, synthesis and potential therapeutic utility
of naturally occurring histone deacetylase inhibitors. Nat. Prod. Rep
26, 1293–1320.
(10) Gardiner, D. M., Waring, P., and Howlett, B. J. (2005) The
epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution,
mode of action, functions and biosynthesis. Microbiology 151, 1021–1032.
(11) Scharf, D. H., Remme, N., Heinekamp, T., Hortschansky, P.,
Brakhage, A. A., and Hertweck, C. (2010) Transannular disulfide
formation in gliotoxin biosynthesis and its role in self-resistance of the
human pathogen Aspergillus fumigatus. J. Am. Chem. Soc.
132, 10136–10141.
(12) Wang, C., Wesener, S. R., Zhang, H., and Cheng, Y. Q. (2009)
An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is
involved in disulfide bond formation in FK228 anticancer depsipeptide.
Chem. Biol. 16, 585–593.
(13) Li, B., and Walsh, C. T. (2010) Identification of the gene cluster
for the dithiolopyrrolone antibiotic holomycin in Streptomyces clavu-
ligerus. Proc. Natl. Acad. Sci. U.S.A. 107, 19731–19735.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: christopher_walsh@hms.harvard.edu. Phone: 617.432.
1715. Fax: (þ1) 617.432.0483.
Funding Sources
This research was financially supported by NIH Grant GM49338
(C.T.W.).
’ ACKNOWLEDGMENT
We thank Dr. Carl Balibar for the generous gift of purified
GliT, Dr. Kapil Tahlan for providing S. clavuligerus ORF15::apr
mutant, Dr. Emily Balskus and Dr. Rebecca Case for assistance in
constructing the phylogeny tree, and Dr. Albert Bowers for
suggestions regarding the manuscript.
(14) Huang, S., Zhao, Y., Qin, Z., Wang, X., Onega, M., Chen, L., He,
J., Yu, Y., and Deng, H. (2011) Identification and heterologous expression
of the biosynthetic gene cluster for holomycin produced by Streptomyces
clavuligerus. Process Biochem.10.1016/j.procbio.2010.1011.1024.
(15) Cramer, R. A., Jr., Gamcsik, M. P., Brooking, R. M., Najvar,
L. K., Kirkpatrick, W. R., Patterson, T. F., Balibar, C. J., Graybill, J. R.,
Perfect, J. R., Abraham, S. N., and Steinbach, W. J. (2006) Disruption of a
non-ribosomal peptide synthetase in Aspergillus fumigatus eliminates
gliotoxin production. Eukaryot. Cell 5, 972–980.
(16) Okamura, K., Soga, K., Shimauchi, Y., Ishikura, T., and Lein, J.
(1977) Holomycin and N-propionylholothin, antibiotics produced by a
cephamycin C producer. J. Antibiot. (Tokyo) 30, 334–336.
(17) Gust, B., Challis, G. L., Fowler, K., Kieser, T., and Chater, K. F.
(2003) PCR-targeted Streptomyces gene replacement identifies a
protein domain needed for biosynthesis of the sesquiterpene soil odor
geosmin. Proc. Natl. Acad. Sci. U.S.A. 100, 1541–1546.
’ ABBREVIATIONS
red-holomycin, reduced holomycin; red-holothin, reduced holothin;
red-gliotoxin, reduced gliotoxin; red-FK228, reduced FK228; HDAC,
histone deacetylase; FAD, flavin adenine dinucleotide; NRPS, non-
ribosomal peptide synthetase; IPTG, isopropyl-β-D-thiogalactopyr-
anoside; TCEP, tris(2-carboxyethyl)phosphine; GSH, glutathione;
GS-SG, oxidized glutathione; NADþ, nicotinamide adenine dinu-
cleotide; NADPþ, nicotinamide adenine dinucleotide phosphate;
SDS-PAGE, sodium dodecyl sulfateꢀpolyacrylamide gel electro-
phoresis; HPLC, high-performance liquid chromatography; LC-MS,
liquid chromatographyꢀmass spectrometry.
’ ADDITIONAL NOTE
a Purified GliT was generously provided by Dr. Carl Balibar,
a previous graduate student in the Walsh group.
(18) Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and
Hopwood, D. A. (2000) Practical Streptomyces Genetics, John Innes
Foundation, Norwich, UK.
(19) Romero, J., Liras, P., and Martin, J. F. (1986) Utilization of
ornithine and arginine as specific precursors of clavulanic acid. Appl.
Environ. Microbiol. 52, 892–897.
’ REFERENCES
(20) Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22, 2688–2690.
(1) Celmer, W. D., and Solomons, I. A. (1955) The structures of
thiolutin and aureothricin, antibiotics containing a unique pyrrolinono-
dithiole nucleus. J. Am. Chem. Soc. 77, 2861–2865.
(21) de la Fuente, A., Lorenzana, L. M., Martin, J. F., and Liras, P.
(2002) Mutants of Streptomyces clavuligerus with disruptions in different
genes for clavulanic acid biosynthesis produce large amounts of holo-
mycin: possible cross-regulation of two unrelated secondary metabolic
pathways. J. Bacteriol. 184, 6559–6565.
(22) Schrettl, M., Carberry, S., Kavanagh, K., Haas, H., Jones, G. W.,
O’Brien, J., Nolan, A., Stephens, J., Fenelon, O., and Doyle, S. (2010)
Self-protection against gliotoxin--a component of the gliotoxin biosyn-
thetic cluster, GliT, completely protects Aspergillus fumigatus against
exogenous gliotoxin. PLoS Pathog. 6, e1000952.
(2) Kenig, M., and Reading, C. (1979) Holomycin and an antibiotic
(MM 19290) related to tunicamycin, metabolites of Streptomyces
clavuligerus. J. Antibiot. (Tokyo) 32, 549–554.
(3) McInerney, B. V., Gregson, R. P., Lacey, M. J., Akhurst, R. J.,
Lyons, G. R., Rhodes, S. H., Smith, D. R., Engelhardt, L. M., and White,
A. H. (1991) Biologically active metabolites from Xenorhabdus spp.,
Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J. Nat. Prod.
54, 774–784.
(4) Shiozawa, H., Kagasaki, T., Kinoshita, T., Haruyama, H., Domon,
H., Utsui, Y., Kodama, K., and Takahashi, S. (1993) Thiomarinol, a
new hybrid antimicrobial antibiotic produced by a marine bacterium.
Fermentation, isolation, structure, and antimicrobial activity. J. Antibiot.
(Tokyo) 46, 1834–1842.
(23) Meyer, Y., Buchanan, B. B., Vignols, F., and Reichheld, J. P.
(2009) Thioredoxins and glutaredoxins: unifying elements in redox
biology. Annu. Rev. Genet. 43, 335–367.
(24) Biggins, J. B., Gleber, C. D., and Brady, S. F. (2011) Acyldepsi-
peptide HDAC Inhibitor Production Induced in Burkholderia thailan-
densis. Org. Lett.10.1021/ol200225v.
(5) Jimenez, A., Tipper, D. J., and Davies, J. (1973) Mode of action of
thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces
cerevisiae. Antimicrob. Agents Chemother. 3, 729–738.
(6) Tipper, D. J. (1973) Inhibition of yeast ribonucleic acid poly-
merases by thiolutin. J. Bacteriol. 116, 245–256.
4622
dx.doi.org/10.1021/bi200321c |Biochemistry 2011, 50, 4615–4622