1346
O. Tamura et al.
LETTER
(9) In contrast, treatment of desilylated congener of 2a with
mesyl chloride (1 equiv) and Et3N (2 equiv) gave an
inseparable complex mixture.
(10) Mita, N.; Tamura, O.; Ishibashi, H.; Sakamoto, M. Org. Lett.
2002, 4, 1111.
In conclusion, we have developed a general method for
synthesis of chiral and cyclic nitrones from hemiacetals
such as sugar derivatives using TBAT-mediated desilyla-
tive cyclization of -mesyloxy-O-tert-butyldiphenylsilyl-
oximes. This synthetic sequence would be useful for poly-
hydroxylated alkaloids and aza-sugars.
(11) (a) Pilcher, A. S.; Ammon, H. L.; DeShong, P. J. Am. Chem.
Soc. 1995, 117, 5166. (b) Pilcher, A. S.; DeShong, P. J. Org.
Chem. 1996, 61, 6901.
(12) The reaction required a prolonged reaction time without MS
4Å.
Acknowledgement
(13) Typical procedure. Preparation of 4a from 1a: A mixture of
1a (500 mg, 3.12 mmol) and MgSO4 (1.5 g) in toluene (5
mL) was heated at reflux for 5 min. To this mixture were
added successively H2NOTBDPS (2.54 g, 9.36 mmol) and
PPTS (39.0 mg, 0.156 mmol) at the same temperature. After
further heating for 15 min, MgSO4 was filtered off, and the
filtrate was washed successively with an aqueous saturated
solution of NaHCO3 and brine, dried (MgSO4), and
concentrated under reduced pressure. The residue was
purified by column chromatography on silica gel with n-
hexane–EtOAc (2:1) to give 2a. Compound 2a was
dissolved in CH2Cl2 (8 mL). Mesyl chloride (0.73 mL, 9.26
mmol) and Et3N (0.60 mL, 9.27 mmol) were added to the
stirred solution at 0 °C. After stirring for 15 min, water was
added to the mixture, and the whole was extracted with
CHCl3. The organic phase was washed with brine, dried
(MgSO4), and concentrated under reduced pressure. The
residue was purified by column chromatography on silica
gel with n-hexane–EtOAc (3:1) to afford a 65:35 mixture of
(E)-3a and (Z)-3a (1.51 g, 98% from 1a). (E)-3a: 1H NMR
(500 MHz, CDCl3) 1.09 (9 H, s), 1.36 (3 H, s), 1.53 (3 H,
s), 2.97 (3 H, s), 4.16 (1 H, dd, J = 6.8, 11.2 Hz), 4.20 (1 H,
dd, J = 4.5, 11.2 Hz), 4.46 (1 H, br dt, J = 4.5, 6.8 Hz), 4.79
(1 H, br t, J = 7.3 Hz), 7.39–7.41 (5 H, m), 7.64–7.69 (6 H,
m). (Z)-3a: 1.11 (9 H, s), 1.31 (3 H, s), 1.49 (3 H, s), 2.86 (3
H, s), 4.08 (1 H, dd, J = 5.5, 11.0 Hz), 4.27 (1 H, dd, J = 2.8,
11.0 Hz), 4.76 (1 H, br dt, J = 2.8, 7.3 Hz), 5.44 (1 H, br dd,
J = 3.7, 7.3 Hz), 7.19 (1 H, d, J = 3.7 Hz), 7.36–7.43 (5 H,
m), 7.61–7.68 (5 H, m). To a boiling suspension of 3a
obtained above (603 mg, 1.23 mmol) and MS 4A (powder,
2.5 g) in THF (50 mL) was added a solution of TBAT (682
mg, 1.23 mmol) in THF (3 mL), and the mixture was further
heated at the same temperature for 7 min. After cooling, MS
4A was filtered off and the filtrate was concentrated under
reduced pressure. The residue was purified by column
chromatography on silica gel with EtOAc–MeOH (1:0 to
8:1) to give 4a (135 mg, 70%), mp 110–112 °C (diisopropyl
ether), [ ]D26 –26.3 (c 0.50, CH2Cl2) [lit.4 mp 110–111 °C,
[ ]D20 –28.0 (c 0.46, CH2Cl2)]. 1H NMR (500 MHz, CDCl3)
1.38 (3 H, s), 1.47 (3 H, s), 4.05 (1 H, br d, J = 15.1 Hz),
4.14 (1 H, br dd, J = 4.4, 15.1 Hz), 4.92 (1 H, br t, J = 6.4
Hz), 5.31 (1 H, br d, J = 5.9 Hz), 6.89 (1 H, br s); 13C NMR
(125 MHz, CDCl3) 25.6, 27.1, 67.9, 73.5, 79.8, 112.1,
132.5. The 1H NMR spectral data are identical with those
previously reported.4
This work was supported by NOVARTIS Foundation (Japan) for
the Promotion of Science.
References
(1) For recent examples of syntheses of natural products and
related compounds using chiral and cyclic nitrones, see:
(a) Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.;
Kita, T.; Hashimoto, Y. Org. Lett. 2002, 4, 177.
(b) Watanabe, H.; Okue, M.; Kobayashi, H.; Kitahara, T.
Tetrahedron Lett. 2002, 43, 861. (c) Ooi, H.; Urushibata,
A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett.
2001, 3, 953. (d) Looper, R. E.; Williams, R. M.
Tetrahedron Lett. 2001, 42, 769. (e) Duff, F. J.; Vivien, V.;
Wightman, R. H. Chem. Commun. 2000, 2127. (f) Cordero,
F. M.; Gensini, M.; Goti, A.; Brandi, A. Org. Lett. 2000, 2,
2475. (g) Peer, A.; Vasella, A. Helv. Chim. Acta 1999, 82,
1044. (h) Williams, G. M.; Roughly, S. D.; Davis, J. E.;
Holmes, A. B. J. Am. Chem. Soc. 1999, 121, 4900. (i) For
recent examples using racemic cyclic nitrones, see: White, J.
D.; Blakemore, P. R.; Korf, E. A.; Yokochi, A. F. T. Org.
Lett. 2001, 3, 413. (j) Also see: Werner, K. M.; de los
Santos, J. M.; Weinreb, S. M. J. Org. Chem. 1999, 64, 686.
(2) (a) Cicchi, S.; Marradi, M.; Goti, A.; Brandi, A. Tetrahedron
Lett. 2001, 42, 6503. (b) Goti, A.; Cicchi, S.; Cacciarini, M.;
Cardona, F.; Fedi, V.; Brandi, A. Eur. J. Org. Chem. 2000,
3633. (c) Goti, A.; De Sario, F.; Romani, M. Tetrahedron
Lett. 1994, 35, 6571. (d) Ballini, R.; Marcantoni, E.; Petrini,
M. J. Org. Chem. 1992, 57, 1316. (e) Tronchet, J. M. J.;
Zosimo-Landolfo, G.; Balkadjian, M.; Ricca, A.; Zsély, M.;
Barbalat-Rey, F.; Cabrini, D.; Lichtle, P.; Geoffroy, M.
Tetrahedron Lett. 1991, 32, 4129.
(3) (a) Hall, A.; Meldrum, K. P.; Therond, P. R.; Wightman, R.
H. Synlett 1997, 123. (b) Ishikawa, T.; Tajima, Y.; Fukui,
M.; Saito, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1863.
(4) Cicchi, S.; Corsi, M.; Brandi, A.; Goti, A. J. Org. Chem.
2002, 67, 1678.
(5) A part of this work has been the subject of a preliminary
report, see: Toyao, A.; Miyazaki, I.; Tamura, O.; Ishibashi,
H. 121st Annual Meeting of The Pharmaceutical Society of
Japan: Sapporo, 2001.
(6) Ballou, C. E. J. Am. Chem. Soc. 1957, 79, 165.
(7) Muri, D.; Bode, J. W.; Carreira, E. M. Org. Lett. 2000, 2,
539.
(8) When H2NOTMS or H2NOTBDMS was used, a mixture of
the corresponding -hydroxy-O-silylated oxime and the
desilylated oxime was obtained. Use of azeotropic removal
of water instead of MgSO4, again gave a similar mixture.
(14) Matsuda, M.; Kobayashi, T.; Nagao, S.; Ohta, T.; Nozoe, S.
Heterocycles 1996, 43, 685.
Synlett 2002, No. 8, 1344–1346 ISSN 0936-5214 © Thieme Stuttgart · New York