C O M M U N I C A T I O N S
Table 2. Stereochemistry of Olefinic Side Chaina
Table 1. Examining the Scope of the Allenic Alder Ene Reactiona
entry
allenyne
triene
conditions
E/Z
yield (%)
1
2
3
4
5
6
7
4
4
4
4
15
23
31
5
5
5
5
16
24
32
A
5:1
13:1
4:1
>20:1
180:1c
>20:1
>99:1c
72
67
46
57
67
62
74
Bb
Cb
D
D
D
D
a Conditions: (A) 2 mol % [Rh(CO)2Cl]2, toluene, N2, 90 °C, 1 h. (B)
5 mol % [Rh(COD)Cl]2, 10 mol % AgSbF6, DCE, rt, 15 min. (C) 5 mol %
[Rh(CH2CH2)2Cl]2, 10 mol % AgSbF6, DCE, rt, 15 min. (D) 10 mol %
b
[Ir(COD)Cl]2, 20 mol % AgBF4, DCE, 60 °C, 5 min. Under these
conditions the silyl group was completely removed from the exocyclic olefin.
c E/Z ratio determined by GC analysis.
compound 25 and the substrates possessing terminal alkynes to these
iridium conditions gave only decomposition by crude NMR. In the
terminal alkyne case, the iridium most likely reacts with the acidic
alkyne proton to form a metal acetylide. Further studies from our
laboratory will be forthcoming which will elucidate the scope of
this stereoselective iridium allenic Alder ene reaction.
In conclusion, we have discovered a rhodium(I)-catalyzed allenic
Alder ene reaction that provides cross conjugated trienes in very
good yields. This method shows enticing functional group compat-
ibility, and progress has been made to increase the stereoselectivity
of the olefinic side chain via iridium(I) catalysis. We have
subsequently shown that these trienes can be used in tandem Diels-
Alder reactions, and these results will be reported on soon.
Acknowledgment. We gratefully acknowledge the funding
provided by the National Institutes of Health (GM54161), the
National Science Foundation and the University of Pittsburgh.
a Conditions: 2 mol % [Rh(CO)2Cl]2, toluene, N2. *5 mol [Rh(COD)Cl]2,
10 mol % AgSbF6. ( Reactions were run in CH2Cl2 or DCE; toluene gave,
on average, yields that were 15% lower.
1
Supporting Information Available: Experimental details and H
and 13C NMR spectra of all new compounds are available (PDF). This
1). Finally, an unprotected hydroxymethyl group is well-tolerated
in the rhodium-catalyzed Alder ene reaction. Allenynes 27, 29, and
31 give high yields of the corresponding trienes 28, 30, and 32
(entries 11-13).
References
(1) Trost, B. M.; Lautens, S. M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J.
Am. Chem. Soc. 1991, 113, 636. For a review on transition-metal-catalyzed
reactions, see: Trost, B. M.; Krische, M. J. Synlett 1998, 1.
(2) Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 1976.
(3) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490. See
citations 3 and 4 of this reference for other transition-metal-catalyzed Alder
ene reactions.
(4) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001, 101, 2067;
Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123,
12466; Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 1999, 121, 4068.
(5) Llerena, D.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1996, 37, 7027.
For a review on the behavior of enynes and transition metals, see: Aubert,
C.; Buisine, O.; Malacria, M. Chem. ReV. 2002, 102, 813.
(6) Yamazaki, T.; Urabe, H.; Sato, F. Tetrahedron Lett. 1998, 39, 7333.
(7) Pagenkopf, B. L.; Belanger, D. B.; O’Mahony, D. J. R.; Livinghouse, T.
Synthesis 2000, 1009. Oh, C. H.; Jung, S. H.; Rhim, C. Y. Tetrahedron
Lett. 2001, 42, 8669.
(8) Tsuge, O.; Wada, E.; Kanemasa, S. Chem. Lett. 1983, 1525; Woo, S.;
Squires, N.; Fallis, A. G. Org. Lett. 1999, 1, 573. Woo, S.; Legoupy, S.;
Parra, S. Fallis, A. G. Org. Lett. 1999, 1, 1013; Spino, C.; Tu, N.
Tetrahedron Lett. 1994, 35, 3683; Spino, C.; Liu, G.; Tu, N.; Girard, S.
J. Org. Chem. 1994, 59, 5596.
(9) Tsuge, O.; Wada, E.; Kanemasa, S. Chem. Lett. 1983, 239.
(10) Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards,
B.; Sill, P. C.; Geib, S. J. Org. Lett. 2002, 4, 1931. Brummond, K. M.;
Sill, P. C.; Rickards, B.; Geib, S. J. Tetrahedron Lett. 2002, 43, 3735.
(11) For a catalyst-controlled [4 + 2] diene-allene cycloaddition, see: Wender,
P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117, 1843.
The ability to control the stereochemistry of the olefinic side
chain is important if this method is to be applicable to target-
oriented synthesis and to gain a better understanding of the transition
metal-catalyzed Alder ene reaction. Allenyne 4 and [Rh(CO)2Cl]2
give triene 5 with an E:Z selectivity of 5:1 (entry 1, Table 2).
Allenyne 4 and [Rh(COD)Cl]2 along with 10 mol % of AgSbF6
additive provided the desilylated triene 5 in 67% yield with an E:Z
ratio of 13:1 (entry 2, Table 2). In contrast to the example in entry
1, this reaction was very fast at room temperature. Treatment of
allenyne 4 to 5 mol % [Rh(CH2CH2)2Cl]2 and 10 mol % AgSbF6
gave a 46% yield of desilylated triene 5 in an E:Z ratio of 4:1
(entry 3, Table 2). Moving down the periodic column to iridium
enhanced the selectivity, since subjecting allenyne 4 to 10 mol %
[Ir(COD)Cl]2 along with 20 mol % of AgBF4 additive provided
the triene 5 in 57% yield with an E:Z ratio of >20:1 as measured
by 1H NMR (entry 4, Table 1). Using these same iridium conditions,
compounds 15, 23, and 31 all afforded good yields of the trienes
with very high E:Z selectivities (entries 5, 6, and 7, Table 2). In
addition to the very high E:Z selectivities, this represents the first
iridium-catalyzed Alder ene reaction. However, treatment of
JA027588P
9
J. AM. CHEM. SOC. VOL. 124, NO. 51, 2002 15187