J. S. Dileep Kumar et al.
FULL PAPERS
(t, 1H, J 8.0 Hz); 19F NMR (CDCl3): d 76.20 (s), 76.42 (s);
HREIMS: calcd. for C16H12F2N2O3S: 350.0537; found:
350.0541.
A. F. Shaffer, Y. Y. Zhang, B. S. Zweifel, K. Seibert, J.
Med. Chem. 2000, 43, 775 777.
[8] A. G. Habeeb, P. N. P. Rao, E. E. Knaus, Drug Dev. Res.
2000, 51, 273 286.
[9] P. Gr¸nanger, P. Vita-Finzi, in The Chemistry of Hetero-
cyclic Compounds, Vol. 49 (Eds.: E. C. Taylor, A.
Weissberger), John Wiley & Sons, New York, 1991,
pp. 125 264; for more recent methods, see: A. R.
Katritzky, M. Wang, S. Zhang, M. V. Voronkov, P. J.
Steel, J. Org. Chem. 2001, 66, 6787 6791, and references
cited therein.
3-(4-Fluorophenyl)-5-methyl-4-[4-(methylsulfonyl)phenyl]-
isoxazole (25) was similarly synthesized from 10 (prepared
from 1 mmol of 8) and 20 (140 mg, 0.60 mmol) using Pd(PPh3)4
(20 mg, 0.017 mmol) as a colorless solid; yield: 50% based on
20. 1H NMR (CD3OD): d 2.49 (s, 3H), 3.14 (s, 3H), 7.12 (br t,
2H, J 8.5 Hz), 7.40 (br dd, 2H, J 8.5, 5.5 Hz), 7.46 (br d, 2H,
J 8 Hz), 7.97 (br d, 2H, J 8 Hz); 19F NMR (CD3OD): d
75.92; HREIMS: calcd. for C17H14FNO3S: 331.0678; found:
331.0671.
3-(4-Fluorophenyl)-5-methyl-4-(5-pyrimidinyl)isoxazole (27)
was similarly synthesized from 10 (prepared from 1 mmol of 8)
and 5-bromopyrimidine (26) (95 mg, 0.60 mmol) using
Pd(PPh3)4 (20 mg, 0.017 mmol) as a colorless solid; yield:
60% based on 26. 1H NMR (CDCl3): d 2.46 (s, 3H), 7.01 (br t,
2H, J 8.5 Hz), 7.30 (br dd, 2H, J 8.5, 5.5 Hz), 8.51 (s, 2H),
9.15 (s, 1H); 19F NMR (CDCl3): d 76.38; HREIMS: calcd. for
C114H10FN3O: 255.0808; found: 255.0805.
[10] For example, the syntheses by Talley et al. (Ref.[7]) and
by Habeeb et al. (Ref.[8]) started from the 1,2-diaryl-
ethanone and 3,4-diaryl-3-buten-2-one derivatives, respec-
tively. Most of these starting compounds are not com-
mercially available and thereby need to be synthesized.
[11] H. Kromann, F. A. Sl˘k, T. N. Johansen, P. Krogsgaard-
Larsen, Tetrahedron 2001, 57, 2195 2201.
[12] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457
2483; b) A. Suzuki, J. Organometal. Chem. 1999, 576,
147 168; c) H. Grˆger, J. Prakt. Chem. 2000, 342, 334
339; d) R. E. Sammelson, M. J. Kurth, Chem. Rev. 2001,
101, 137 202; e) S. R. Chemler, D. Trauner, S. J. Dani-
shefsky, Angew. Chem. Int. Ed. 2001, 40, 4544 4568.
[13] Combinatorial approaches to isoxazoles have been
reported. However, these methods are not suitable for
the selective and rapid synthesis of 3,4-diarylsioxazoles.
See: a) A. L. Marzinzik, E. R. Felder, Molecules 1997, 2,
17 30; b) B. B. Shankar, D. Y. Yang, S. Girton, A. K.
Ganguly, Tetrahedron Lett. 1998, 39, 2447 2448; c) D.-
M. Shen, M. Shu, K. T. Chapman, Org. Lett. 2000, 2,
2789 2792.
[14] The compound 5 has been synthesized by different
methods. For example, see: a) M. Yokoyama, K. Tsuji,
M. Kushida, J. Chem. Soc. Perkin Trans. 1 1986, 67 72;
b) O. Moriya, Y. Urata, T. Endo, J. Chem. Soc. Chem.
Commun. 1991, 884 885; c) W. H. Bunnelle, P. R.
Singam, B. A. Narayanan, C. W. Bradshaw, J. S. Liou,
Synthesis 1997, 439 442.
[15] The oximes 3 and 4 were prepared from acetophenone
and 4'-fluoroacetophenone, respectively, see: B. J. Greg-
ory, R. B. Moodie, K. Schofield, J. Chem. Soc. B 1970,
338 346.
[16] Bromination of the isoxazole ring is known to occur
predominantly at the 4-position, see Ref.[9] pp. 337 340.
[17] S. D. Sokolov, T. N. Egorova, Khim. Geterotsikl. Soedin.
1974, 1697 1698; Chem. Abstr. 1974, 82, 97965.
[18] The boronic acid 13 was prepared from 18 by 4,4'-
dimethoxytritylation, followed by a sequence of metal-
lation and boration, and used without extensive charac-
terization (see Experimental Section).
[19] It is reported that arylboronic acids bearing electron-
withdrawing groups are prone to deboronation with
base, see: S. Saito, S. Oh-tani, N. Miyaura, J. Org. Chem.
1997, 62, 8024 8030, and references cited therein.
[20] The aryl bromides 17 and 20 are commercially available.
Other aryl bromides are known; for 18, see: D. Cheshire,
M. Stocks (Astra Pharmaceuticals Ltd.), WO 0018730,
2000; Chem. Abstr. 2000, 132, 265088; for 19, see: D. F.
Acknowledgements
This work was supported by a research grant from the National
Institutes of Health (CA86306). J.S.D.K. was supported by a
fellowship through the Norton Simon Fund at UCLA.
References and Notes
[1] a) R. G. Micetich, C.-C. Shaw, R. B. Rastogi (CDC Life
Science Inc.), EP 26928, 1981; Chem. Abstr. 1981, 95,
115518; b) Y. Hagiwara, M. Tanaka, A. Kajitani, S.
Yasumoto (Taiho Pharmaceutical Co.), JP 03220180,
1991; Chem. Abstr. 1991, 116, 128944.
[2] a) N. Minami, M. Sato, K. Hasumi, N. Yamamoto, K.
Keino, T. Matsui, A. Kaneda, S. Ota, N. Saito, S. Sato, A.
Asadori, S. Doi, M. Kobayashi, J. Sato, S. Asano
(Teikoku Hormone Mfg. Co.), JP 2000086657, 2000;
Chem. Abstr. 2000, 132, 251139; b) J. Green, G. Bemis,
A.-L. Grillot, M. Ledeboer, F. Salituro, E. Harrington,
H. Gao, C. Baker, J. Cao, M. Hale (Vertex Pharmaceut-
icals Inc.), WO 0112621, 2001; Chem. Abstr. 2001, 134,
178569.
[3] G. Dannhardt, P. Dominiak, S. Laufer, Arzneim.-Forsch.
1993, 43, 441 444.
[4] V. D. H¸bner, X. Lin, I. James, L. Chen, M. Desai, J. C.
Moore, B. Krywult, T. Navaratnam, R. Singh, R. Trainor,
L. Wang (Chiron Co.), WO 0008001, 2000; Chem. Abstr.
2000, 132, 166233.
[5] J. J. Talley, Prog. Med. Chem. 1999, 13, 201 234.
[6] For reviews on COX enzymes, see: a) H. R. Herschman,
Biochim. Biophys. Acta 1996, 1299, 125 140; b) J. R.
Vane, Y. S. Bakhle, R. M. Botting, Annu. Rev. Pharma-
col. Toxicol. 1998, 38, 97 120.
[7] a) J. J. Talley (G. D. Searle & Company), US Patent
5,859,257, 1999; Chem. Abstr. 1999, 130, 110269; b) J. J.
Talley, D. L. Brown, J. S. Carter, M. J. Graneto, C. M.
Koboldt, J. L. Masferrer, W. E. Perkins, R. S. Rogers,
1150
Adv. Synth. Catal. 2002, 344, 1146 1151