ChemComm
Communication
4501 unique (Rint = 0.0433) used in all calculations. Final R1 0.0322
by factors of 2 to 6, with 50% of the observed species unchanged.
The formation of multiple species with AAZTA (and to a lesser
extent with L1) of differing relative stability is consistent with the
formation of ‘kinetically trapped’, constitutionally isomeric com-
plexes (Scheme 1). These less stable complexes may involve weaker
binding to the EDDA moiety. For AAZTA, the adoption of N2O4 as
well as the favourable N3O3 coordination type may occur competi-
tively. Importantly, with L2–4, the formation of a single, major stable
gallium bound species is most probably assisted by adoption of a
favourable, ‘pre-organised’ conformer of the di-N-protonated
ligand, in which the exocyclic N-substituent adopts an axial site.
These gallium-labelling characteristics compare favourably
with the behaviour reported for related acyclic and macrocyclic
hexadentate ligands.3,4,13–15 Indeed, in separate challenge
experiments with L1–4 and NOTA (20 mM of each ligand, 0.66 nM
[68Ga], 298 K, pH 4.0, 0.2 M acetate), the acyclic ligands were each
bound in preference within 1 minute and the order of preferential
binding was L3 > L1 > L2 > L4. The ratio of the gallium labelled
L3/NOTA complexes was 3 : 1 under these conditions and did
not vary thereafter with time, reflecting the relative rates of
formation of these kinetically stable complexes.
(>2s(I)); wR2 0.0702 (all data). [GaÁL3]: C17H20GaN3O6, M = 432.08,
%
triclinic, space group P1,
a = 10.6961(8), b = 13.0778(12), c =
13.8414(12) Å, a = 116.076(9), b = 105.208(7), g = 92.002(7)1, V =
1652.8(2) Å3, Z = 4, m(Mo Ka) = 1.709 mmÀ1, Dcalc = 1.736 g mmÀ3
,
16 836 reflections measured (5.04 r 2Y r 55), 7571 were unique (Rint
=
0.0881) and used in all calculations. Final R1 0.0699 (>2s(I)); wR2 0.1864
(all data).
1 For recent examples describing positron emission tomography
using low MW complexes of 68Ga: (a) F. Roesch and P. J. Riss, Curr.
Top. Med. Chem., 2010, 10/16, 1633; (b) I. Velikyan, H. Maecke and
B. Langstrom, Bioconjug. Chem., 2008, 19, 569; (c) P. J. Riss,
C. Burchardt and F. Roesch, Contrast Media Mol. Imaging, 2011,
6, 492.
2 (a) K. Wieghardt, U. Bossek, P. Chaudhuri, W. Herrmann, B. C.
Menke and J. Weiss, Inorg. Chem., 1982, 21, 4308; (b) A. S. Craig,
D. Parker, H. Adams and N. A. Bailey, J. Chem. Soc., Chem. Commun.,
1989, 1793; (c) C. J. Broan, J. P. L. Cox, A. S. Craig, R. Kataky,
D. Parker, A. Harrison, A. M. Randall and G. Ferguson, J. Chem. Soc.,
Perkin Trans. 1, 1991, 87; (d) A. Harrison, C. A. Walker, K. A. Pereira,
L. Royle, R. C. Matthews, D. Parker and A. S. Craig, Nucl. Med.
Commun., 1992, 13, 667; (e) J. P. Andre, H. R. Maecke, M. Zehnder,
L. Macko and K. G. Akyel, Chem. Commun., 1998, 1301;
( f ) E. T. Clarke and A. E. Martell, Inorg. Chim. Acta, 1991, 181, 273.
3 E. Cole, R. C. B. Copley, J. A. K. Howard, D. Parker, G. Ferguson,
J. F. Gallagher, B. Kaitner, A. Harrison and L. Royle, J. Chem. Soc.,
Dalton Trans., 1994, 1619.
Finally, preparations of [68GaL1] and [68GaL4] were injected
into Sprague-Dawley rats to assess preliminary biodistribution
behaviour. The compounds appear to be biologically inert. The
only organs detectable by positron emission tomography were
the liver, kidneys and bladder, with no evidence for complex
retention in any other organ. Twenty-five minutes after admini-
stration of [68GaL1] via the tail vein, the signal was only
detectable by positron emission tomography in the kidney
and bladder, with no evidence for retention in any other organ
(ESI†). Such behaviour is consistent with the high kinetic
stability profile observed in vitro, and suggests that these
complexes offer scope as efficient and effective imaging probes,
and may be simply adapted structurally to allow the labelling of
biomolecules. Current work is exploring this behaviour.
In conclusion, a new series of hexadentate ligands has
been created, suitable for radiolabelling with 68Ga over the
pH range 4 to 7. Using a ligand with an aryl substituent at the
quaternary site, a preferred binding conformation is adopted
that suppresses the formation of less stable, kinetically trapped
complexes.
4 (a) J. Notni, P. Hermann, J. Havlickova, J. Kotek, V. Kubicek, J. Plutnar,
N. Loktionova, P. J. Riss, F. Rosch and I. Lukes, Chem.–Eur. J., 2010,
16, 7174; (b) J. Notni, J. Simecek, P. Hermann and H. J. Wester,
Chem.–Eur. J., 2011, 17, 14718.
5 (a) S. Aime, L. Calabi, C. Cavalloti, E. Gianolio, G. B. Giovenzana,
P. Losi, A. Maiocchi, G. Palmisano and M. Sisti, Inorg. Chem., 2004,
43, 7588; (b) S. Aime, G. Bombieri, C. Cavollotti, G. B. Giovenzana,
D. Imperio and N. Marchini, Inorg. Chim. Acta, 2008, 361, 1534;
(c) Z. Baranyai, F. Uggeri, G. B. Giovenzana, A. Benyei, E. Brucher
and S. Aime, Chem.–Eur. J., 2009, 15, 1696; (d) E. Elemento,
D. Parker, S. Aime, E. Gianolio and L. Lattuada, Org. Biomol. Chem.,
2009, 7, 1120.
6 During the course of this work, managanese(II) complexes of L1 and
L2 were described and evaluated as contrast agents in MRI: L. Tei,
G. Gugliotta, M. Fekete, F. K. Kalman and M. Botta, Dalton Trans.,
2011, 40, 2025.
7 (a) F. Roesch, Curr. Radiopharm., 2012, 5, 202; (b) W. A. Breeman and
A. M. Verbruggen, Eur. J. Nucl. Med. Mol. Imaging, 2007, 34, 978;
(c) K. P. Zhernosekov, D. V. Filosofov, R. P. Baum, P. Aschoff, H. Bihl,
A. A. Razbash, M. Jahn, M. Jennewein and F. Rosch, J. Nucl. Med.,
2007, 48, 1741.
8 Such substituted, heterocyclic seven membered rings adopt several
low energy conformers, of which the twist-chair is often the lowest in
energy: F. Freeman, J. H. Hwang, E. H. Junge, P. D. Parmar, Z. Renz
and J. Trinh, Int. J. Quantum Chem., 2008, 108, 339. Full details of the
conformational analysis of the ligands and the detailed structural
analysis of the gallium complexes will be reported elsewhere.
9 M. G. B. Drew, C. J. Harding, V. McKee, G. G. Morgan and J. Nelson,
J. Chem. Soc. Chem. Commun., 1995, 1035. The corresponding value
for [GaÁNOTA]2b is 6.261.
We thank the Association of Commonwealth Universities for
a scholarship (BPW) and ESF COST Action D38 for support.
˜
10 N. Ortega-Villar, A. L. Thompson, M. C. Munoz, V. M. Ugalde-
Notes and references
´
Saldıvar, A. E. Goeta, R. Moreno-Esparza and J. A. Real,
‡ The X-ray single crystal data were collected at 120 K on an Agilent
Gemini S-Ultra diffractometer (graphite monochromator, lMo Ka, l =
Chem.–Eur. J., 2005, 11, 5721. The corresponding value for [GaÁNOTA]
is 6.451 2b
.
0.70073 Å) equipped with Cryostream (Oxford Cryosystems) open-flow 11 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and
nitrogen cryostat. The structures were solved by direct methods and
H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
refined by full-matrix least squares on F2 for all data using Olex211 and 12 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
SHELXTL12 software. [GaÁL1]: C13H21GaN3O6.5, M = 393.05, orthorhom- 13 Y. Sun, C. J. Anderson, T. Pajeau, D. Reichert, R. D. Hancock,
bic, space group Fdd2, a = 28.8536(7), b = 27.2438(7), c = 7.57981(19) Å,
R. Motekaitis, A. E. Martell and M. Welch, J. Med. Chem., 1996,
39, 458.
V = 5958.3(2) Å3, Z = 16, m(Mo Ka) = 1.888 mmÀ1, Dcalc = 1.753 g mmÀ3
,
18 337 reflections measured (5.64 r 2Y r 59.98), 4319 unique (Rint
=
14 E. Boros, C. L. Ferreira, J. F. Cawthray, E. W. Price, B. O. Patrick,
D. W. Wester, M. J. Adam and C. Orvig, J. Am. Chem. Soc., 2010,
132, 15726.
0.0417) were used in all calculations. Final R1 0.0307 (>2s(I)); wR2
0.0674 (all data). [GaÁL2]: C15H26GaN3O7, M = 430.11, monoclinic, space
group P21, a = 7.58267(20), b = 12.6657(3), c = 9.2185(2) Å, b = 15 D. J. Berry, Y. Ma, J. R. Ballinger, R. Tavare, A. Koers, K. Sunassee,
100.735(3)1, V = 869.85(4) Å3, Z = 2, m(Mo Ka) = 1.627 mmÀ1, Dcalc
=
T. Zhou, S. Nawaz, G. E. D. Mullen, R. C. Hider and P. J. Blower,
Chem. Commun., 2011, 47, 7068.
1.642 g mmÀ3, 12 473 reflections measured (5.46 r 2Y r 57.98),
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 579--581 581