2726
B. A. Bhat et al.
LETTER
(9) (a) Payne, G. B. J. Am. Chem. Soc. 1959, 81, 4901.
In conclusion, a novel and efficient one-pot rearrange-
ment reaction of 2,3-epoxydiphenyl ketones to 2-amino-
5-benzyl-5-phenyl-3,5-dihydro-4H-imidazol-4-ones and
5-benzyl-5-phenylhydantoins from guanidine hydrochlo-
ride and urea, respectively, has been developed. This
method is a convenient and high-yielding procedure for
the synthesis of synthetically and pharmacologically nov-
el 5,5-disubstituted imidazolones and 5,5-disubstituted
hydantoins.
(b) Payne, G. B. J. Org. Chem. 1959, 24, 2048. (c) Adams,
R.; Johnson, J. R.; Wilcox, C. F. Laboratory Experiments in
Organic Chemistry, 5th ed.; The Macmillan Company: New
York, 1963, 381.
(10) Bhat, B. A.; Dhar, K. L.; Puri, S. C.; Saxena, A. K.;
Shanmugavel, M.; Qazi, G. N. Bioorg. Med. Chem. Lett.
2005, 15, 3177.
(11) General Procedure for Preparation for 3,5-Disubstituted
Imidazolones: Typical experimental procedure for
synthesis of 3,5-disubstituted imidazolones as exemplified
for 2a. Guanidine hydrochloride (95.5 mg, 1 mmol) was
added to a solution of 2,3-epoxydiphenyl ketone (334 mg,
1 mmol) in anhyd THF (10 mL). To this was added NaH (48
mg, 2 mmol) at r.t. After 30 min, the reaction mixture was
stirred at reflux temperature for 5 h; TLC analysis indicated
that the reaction was complete. The reaction mixture was
filtered, solvent was removed by rotatory evaporator and the
residue passed through a silica gel column (CHCl3–MeOH)
afforded 2a (315 mg, 72%) as a white solid; mp 281–284 °C.
1H NMR (600 MHz, DMSO-d6): d = 2.97 (d, J = 13.2 Hz, 1
H), 3.11 (d, J = 13.2 Hz, 1 H), 3.57 (s, 3 H, OCH3), 3.65 (s,
6 H, 2 × OCH3), 3.72 (s, 3 H, OCH3), 6.41 (s, 2 H), 6.89 (d,
Acknowledgment
The authors are grateful to Dr. G. N. Qazi, Director RRL, for his
interest and encouragement in the research and one of the authors,
BAB is grateful to CSIR for SRF.
References and Notes
(1) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M.
Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (c) Trost, B.
M. Transition Metals for Organic Synthesis; Beller, M.;
Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998, 1.
(2) (a) Weber, L. Curr. Med. Chem. 2002, 9, 1241.
(b) Bienayme, H.; Hulme, C.; Oddon, G.; Schmidt, P. Chem.
Eur. J. 2000, 6, 3321. (c) Zhu, J. Eur. J. Org. Chem. 2003,
1133. (d) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471.
(e) Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3168. (f) Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett.
2000, 2, 709.
(3) (a) Greenlee, W. J.; Siegl, P. K. S. Ann. Rep. Med. Chem.
1992, 27, 59. (b) Shilcrat, S. C.; Mokhallalati, M. K.;
Fortunak, J. M. D.; Pridgen, L. N. J. Org. Chem. 1997, 62,
8449. (c) Rizzi, J. P.; Nagel, A. A.; Rosen, T.; McLean, S.;
Seeger, T. J. Med. Chem. 1990, 33, 2721. (d) Shapiro, G.;
Gomez-Lor, B. J. Org. Chem. 1994, 59, 5524. (e)Adams, J.
L.; Boehm, J. C.; Kassis, S.; Gorycki, P. D.; Webb, E. F.;
Hall, R.; Sorenson, M.; Lee, J. C.; Ayrton, A.; Griswold, D.
E.; Gallagher, T. F. Bioorg. Med. Chem. Lett. 1998, 8, 3111.
(4) (a) Laufer, S.; Wagner, G.; Kotschenreuther, D. Angew.
Chem. Int. Ed. 2002, 41, 2290. (b) Sarshar, S.; Zhang, C.;
Moran, E. J.; Krane, S.; Rodarte, J. C.; Benbatoul, K. D.;
Dixon, R.; Mjalli, A. M. M. Bioorg. Med. Chem. 2000, 10,
2599. (c) Zhang, C.; Sarshar, S.; Moran, E. J.; Krane, S.;
Rodarte, J. C.; Benbatoul, K. D.; Dixon, R.; Mjalli, A. M. M.
Bioorg. Med. Chem. 2000, 10, 2603. (d) Bilodeau, M. T.;
Cunningham, A. M. J. Org. Chem. 1998, 63, 2800.
(5) Lamothe, M.; Lannuzel, M.; Perez, M. J. Comb. Chem.
2002, 4, 73.
(6) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd
ed., Vol. 12; John Wiley and Sons: New York, 1983, 692–
700.
(7) (a) Faghihi, K.; Mirsamie, A.; Sangi, R. Eur. Polym. J. 2002,
39, 247. (b) Faghihi, K.; Zamani, K.; Mallakpour, S. Iranian
Polym. J. 2002, 11, 339.
(8) (a) For an overview on the synthesis of imidazoles, see:
Ebel, K. In Houben-Weyl: Methoden der Organischen
Chemie, Hetarene III, 1H-Imidazole; Schaumann, E., Ed.;
Georg Thieme Verlag: Stuttgart, New York, 1994, 1–215.
For recent imidazole syntheses, see: (b) Henkel, B.
Tetrahedron Lett. 2004, 45, 2219. (c) Sezen, B.; Sames, D.
J. Am. Chem. Soc. 2003, 125, 5274. (d) Tan, K. L.;
Bergman, R. G.; Ellmann, J. A. J. Am. Chem. Soc. 2002, 124,
13964. (e) Faghihi, K.; Zamani, K.; Mobinikhaledi, A. Turk.
J. Chem. 2004, 28, 345. (f) Mahmoodi, N. O.; Khodace, Z.
Mendeleev Commun. 2004, 304.
J = 9.0 Hz, 2 H), 7.42 (d, J = 9.0 Hz, 2 H), 8.34 (s, 1 H). 13
C
NMR (125 MHz, DMSO-d6): d = 44.8, 55.8 56.3, 60.6, 70.6
108.2, 114.0, 127.4, 132.4, 33.8, 136.7, 152.6, 158.9, 171.2,
189.0. IR (KBr): 3346.2, 32.2, 1698.2, 1645.4, 1593.4,
1299.3, 1127.9, 828.4 cm–1. MS (ESI): m/z = 386.2 [M + H],
408.0 [M + Na]. Anal. Calcd for C20H23N3O5: C, 62.32; H,
6.01; N, 10.90. Found: C, 62.13; H, 6.15; N, 11.20.
2b: White solid; mp 298–302 °C. 1H NMR (200 MHz,
DMSO-d6): d = 2.99 (d, J = 13.4 Hz, 1 H), 3.21 (d, J = 13.4
Hz, 1 H), 3.67 (s, 3 H, OCH3), 3.72 (s, 3 H, OCH3), 6.73 (d,
J = 8.9 Hz, 2 H), 6.9 (d, J = 8.8 Hz, 2 H), 7.03 (d, J = 9.1 Hz,
2 H), 7.41 (d, J = 8.8 Hz, 2 H), 8.20 (s, 1 H). 13C NMR (125
MHz, DMSO-d6): d = 42.6, 54.8, 70.5, 113.1, 125.5, 127.0,
127.9, 128.0, 131.2, 141.0, 157.9, 170.2, 187.9. IR (KBr):
3347.6, 1698.3, 1652.2, 1613.4, 1513.4, 1257.6, 1033.7,
837.6 cm–1. MS (ESI): m/z = 325.2 [M + H]. Anal. Calcd for
C18H19N3O3: C, 66.45; H, 5.89; N, 12.91. Found: C, 66.71;
H, 6.05; N, 12.73.
3a: White solid; mp 238–241 °C. 1H NMR (600 MHz,
DMSO-d6): d = 2.88 (d, J = 13.5 Hz, 1 H), 3.35 (d, J = 13.5
Hz, 1 H), 3.59 (s, 3 H, OCH3), 3.69 (s, 6 H, 2 × OCH3), 3.73
(s, 3 H, OCH3), 6.48 (s, 2 H), 6.95 (d, J = 8.9 Hz, 2 H), 7.51
(d, J = 8.9 Hz, 2 H), 8.51 (s, 1 H), 10.46 (s, 1 H). 13C NMR
(125 MHz, DMSO-d6): d = 44.9, 55.8, 56.4, 60.5, 68.6,
108.4, 114.4, 127.5, 131.1, 132.0, 137.2, 152.9, 156.8,
159.6, 176.6. IR (KBr): 3444.1, 3342.0, 1766.7, 1709.4,
1586.6, 1241.9, 1129.9, 839.2 cm–1. MS (ESI): m/z = 385
[M – H], 409.2 [M + Na]. Anal. Calcd for C20H22N2O6: C,
62.16; H, 5.73; N, 7.25. Found: C, 62.13; H, 6.14; N, 7.36.
3b: White solid; mp 204–207 °C. 1H NMR (200 MHz,
DMSO-d6): d = 2.96 (d, J = 13.5 Hz, 1 H), 3.34 (d, J = 13.5
Hz, 1 H), 3.74 (s, 3 H, OCH3), 6.96 (d, J = 8.8 Hz, 2 H), 7.16
(m, 4 H), 7.51 (d, J = 8.8 Hz, 2 H), 8.59 (s, 1 H). 13C NMR
(125 MHz, DMSO-d6): d = 43.0, 55.6, 70.5, 113.9, 114.6,
114.8, 127.1, 132.4, 132.5, 133.5, 158.6, 160.5, 160.6,
162.6, 170.9, 188.6. IR (KBr): 3373.9, 1757.5, 1713.4,
1608.3, 1511.7, 1403.6, 1257.7, 1225.7, 845.8 cm–1. MS
(ESI): m/z = 315 [M + H]. Anal. Calcd for C17H15FN2O3: C,
64.96; H, 4.81; N, 8.91. Found: C, 65.08; H, 5.09; N, 8.97.
(12) (a) Cleeland, R. Jr.; Grunberg, E.; Leimgruber, W.; Weigele,
M. US Patent, 4045487, 1977; Chem. Abstr. 1977, 87,
167872. (b) Baranes, R. P.; Chigbo, F. E. J. Org. Chem.
1963, 28, 1644.
Synlett 2006, No. 17, 2723–2726 © Thieme Stuttgart · New York