F. Be´lot et al. / Tetrahedron Letters 43 (2002) 7743–7747
7747
J
J
2,NH=7.6 Hz, GalNAc N-H), 5.48 (dd, 1H, J1,2=7.8 Hz,
2,3=10.0 Hz, Gal H-2), 5.39 (s, 1H, PhCH), 5.10 (m, 2H,
in a single step using a2,3-sialyl transferase and CMP-
NANA. The reaction did not go to completion, how-
ever, ion exchange chromatography enabled us to
isolate the desired pentasaccharide II in 55% yield. For
fucosylation, incubation of II with FucT-V and GDP-
Fuc gave the sulfonato-hexasaccharide III in a nearly
quantitative yield.18,19 Both enzymes demonstrated a
tolerance for sulfated acceptor substrates as the enzymes
in the biosynthetic route for the MECA-79 epitope
(Scheme 7).
OAll), 5.06 (d, 1H, J1,2=3.3 Hz GalNAc H-1), 5.04 (d,
1H, Gal H-1), 4.60 (dd, 1H, J5,6a=7.3 Hz, J6a,6b=11.5
Hz, Gal H-6a), 4.51 (m, 1H, J2,3=11.3 Hz, GalNAc H-2),
4.42 (dd, 1H, J5,6b=5.1 Hz, Gal H-6b), 4.40 (dd, 1H,
J
3,4=3.0 Hz, J4,5<1.0 Hz, GalNAc H-4), 4.20 (m, 1H, Gal
H-5), 4.15–3.70 (m, 6H, GalNAc H-6a, H-6b, H-3, Gal
H-3, OAll), 3.60–3.30 (m, 3H, GalNAc H-5, O-Octyl),
1.60 (s, 3H, Ac). 13: 5.90 (dd, 1H, J3,4=3.4 Hz, J4,5<1 Hz,
Gal H-4), 5.80 (dd, 1H, J2,3=10.8 Hz, J3,4=8.9 Hz,
GlcNAc H-3), 5.68 (dd, 1H, J1,2=7.9 Hz, J2,3=10.4 Hz,
Gal H-2), 5.40 (dd, 1H, Gal H-3), 5.32 (d, 1H, J1,2=8.5
Hz, GlcNAc H-1), 4.80 (d, 1H, Gal H-1), 4.85 and 4.40
(2d, 2H, PhCH2), 4.43 (m, 2H, Gal H-6a H-6b), 4.25 (dd,
1H, GlcNAc H-2), 4.17 (t, 1H, J4,5=10.5 Hz, GlcNAc
H-4), 4.06 (m, 1H, Gal H-5), 3.90 (m, 1H, OSE), 3.71 (dd,
1H, GlcNAc H-6a), 3.60–3.50 (m, 2H, GlcNAc H-5
H-6b), 3.42 (m, 1H, OSE), 1.92 (s, 3H, OAc), 0.80 (m, 2H,
OSE) and −0.1 (s, 9H, OSE). 15: 5.82 (dd, 1H, J3,4=3.2
Hz, J4,5<1 Hz, Gal H-4), 5.80 (dd, 1H, J3,4=3.0 Hz,
J4,5<1.0 Hz, Gal H-4), 5.60–5.30 (m, 6H, GlcNAc H-3,
GalNAc H-4 and N-H, Gal 2H-2 H-3), 5.02, 4.80 and
4.65 (3d, 3H, J1,2=8.2 Hz, J1,2=7.9 Hz, J1,2=8.0 Hz, Gal
2H-1, GlcNAc H-1), 4.76 (d, 1H, J1,2=3.3 Hz, GalNAc
H-1), 4.54 and 4.22 (2d, 2H, PhCH2), 4.46–4.24 (m, 7H,
GlcNAc H-2 H-4, GalNAc H-2, Gal 4×H-6), 4.10–3.50
(m, 9H, Gal 2×H-5 H-3, GlcNAc 2×H-6, H-5, GalNAc
H-5, 2xH-6), 1.97, 1.93, 1.70, 1.60 (4s, 12H, Ac).
6. Conclusion
Sulfated oligosaccharides were efficiently synthesized
using chemoenzymatic synthetic scheme with the
enzymes utilizing the sulfated substrates. In addition,
new glycosylations conditions were tested with success
when standard conditions were unsuitable, and it was
demonstrated that controlled heating of glycosylation
reaction mixtures was a way to activate acceptors with-
out degradation.
Acknowledgements
This work was supported by the NIH grant
P01CA71932.
15. Standard procedure: A mixture of donor (case 1: 7, 1.7
equiv.; case 2: 12, 2 equiv.; case 3: 14, 1.5 equiv.),
acceptor (case 1: 4, 1 equiv.; case 2: 11, 1 equiv.; case 3:
References
,
1. Rosen, S. D. Am. J. Pathol. 1999, 155, 1013–1020.
2. Steeter, P. R.; Rouse, B. T.; Butcher, E. C. J. Cell. Biol.
1988, 107, 1853–1862.
3. Hemmerich, S.; Butcher, E. C.; Rosen, S. D. J. Exp. Med.
1994, 180, 2219–2226.
4. Hiraoka, N.; Petryniak, B.; Nakayama, J.; Tsuboi, S.;
Susuki, M.; Yeh, J. C.; Izawa, D.; Tanaka, T.; Lowe, J.
B.; Fukuda, M. Immunity 1999, 11, 79–89.
5. Yeh, J. C.; Hiraoka, N.; Petryniak, B.; Nakayama, J.;
Ellies, L. G.; Rabuka, D.; Hindsgaul, O.; Marth, J. D.;
Lowe, J. B.; Fukuda, M. Cell 2001, 105, 957–969.
6. Misra, A. K.; Ding, Y.; Lowe, J. B.; Hindsgaul, O.
Bioorg. Med. Chem. Lett. 2000, 10, 1505–1509.
7. Koeller, K. M.; Wong, C. H. Chem. Rev. 2000, 100,
4465–4494.
9, 1 equiv.) and 4 A powdered molecular sieves in anhy-
drous 1,2-dichloroethane was stirred for 1 h at rt under
dry Ar. Triflic acid was added dropwise and the mixture
was stirred for 1 h 30 min at 55°C. After cooling to rt,
Et3N was added, and the mixture was filtered and concen-
trated. The residue was eluted from a column of silica gel
to provide the desired compound (case 1: 8, 69%; case 2:
13, 85%; case 3: 15, 50%).
16. Bowman, K. G.; Cook, B. N.; de Graffenried, C. L.;
Bertozzi, C. R. Biochemistry 2001, 40, 5382–5391.
17. Koeller, K. M.; Smith, M. E. B.; Wong, C.-H. J. Am.
Chem. Soc. 2000, 122, 742–743.
18. Partial NMR and MS data for final products: I%: 1H NMR
(D2O): l: 4.89 (d, 1H, J1,2=3.6 Hz, H-1GalNAc), 4.72 (d,
1H, J1,2=8.3 Hz, H-1GlcNAc), 4.47 (d, 1H, J1,2=7.3 Hz,
H-1Gal), 4.44 (d, 1H, J1,2=8.0 Hz, H-1Gal), 2.04 and 2.03
(2s, 6H, 2 NHAc); 13C NMR: 105.55, 103.69, 103.48,
97.80 (4 C-1); HRMS calcd for C36H64N2NaO21 (M+Na+):
883.389, found 883.388. I: 1H NMR (D2O): l: 4.88 (d,
1H, J1,2=3.6 Hz, H-1GalNAc), 4.75 (d, 1H, J1,2=8.2 Hz,
H-1GlcNAc), 4.53 (d, 1H, J1,2=7.5 Hz, H-1Gal), 4.48 (d, 1H,
8. Bazin, H. G.; Du, Y.; Polat, T.; Linhardt, R. J. J. Org.
Chem. 1999, 64, 7254–7259.
9. Aguilera, B.; Romero-Ramirez, L.; Abad-Rodriguez, J.;
Corrales, G.; Nieto-Sampedro, M.; Fernandez-May-
oralas, A. J. Med. Chem. 1998, 41, 4599–4606.
10. (a) Lay, L.; Nicotra, F.; Panza, L.; Russo, G. Helv. Chim.
Acta 1994, 77, 509–514; (b) Be´lot, F.; Jacquinet, J.-C.
Carbohydr. Res. 2000, 325, 93–106.
11. Kartha, K. P. R.; Field, R. A. Tetrahedron 1997, 34,
11753–11766.
12. Debenham, S. D.; Toone, E. J. Tetrahedron: Asymmetry
2000, 11, 385–387.
J
1,2=7.9 Hz, H-1Gal), 2.05 and 2.02 (2s, 6H, 2 NHAc); 13
C
NMR: 105.52, 103.62, 103.44, 97.65 (4 C-1); HRMS calcd
for C36H63N2Na2O24S (M+Na+): 985.328, found 985.325.
III: 1H NMR (D2O): l: 5.10 (d, 1H, J1,2=3.9 Hz, H-1Fuc),
4.72 (d, 1H, J1,2=3.5 Hz, H-1GalNAc), 4.59 (d, 1H, J1,2
=
8.0 Hz, H-1GlcNAc), 4.42 (m, 2H, 2 H-1Gal), 2.72 (dd, 1H,
H-3e), 2.02–1.98 (3s, 9H, 3 NHAc), 1.78 (t, 1H, H-3a),
13. Rio, S.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res.
1991, 219, 71–90.
14. Partial H NMR (CDCl3): 8: 5.85 (dd, 1H, J3,4=3.1 Hz,
1.18 (d, 3H,
J5,6=6.5 Hz, H-6Fuc); MS calcd for
C53H90N3NaO36S (M+): 1399.49, found 1399.4.
19. Sialyltransferase: ST3GalIII, Calbiochem (566218) and
Fucosyltransferase: FucT-V, Calbiochem (344320).
1
J4,5<1.0 Hz, Gal H-4), 5.60 (m, 1H, OAll), 5.52 (d, 1H,