Scheme 1
highly reactive fluoro or triflate bearing nucleosides are
studies on DNA containing the tetrahydro and diol epoxides
will be useful in understanding what, if any influence the
two additional hydroxyl groups have on the local DNA
structure that is ultimately reflected in the biological
response. Amine (()-2 and nucleosides 4-7 required for
these studies were prepared on the basis of known methods
(see the Supporting Information).
Our earlier studies7a,12 provided a reasonable starting point
for determining whether (()-2 and the halo nucleosides could
be coupled by Pd catalysts. Using the catalytic system Pd2-
(dba)3/2-(dicyclohexylphosphino)-2′-(N,N-dimethylamino)-
1,1′-biphenyl (10:30 mol %) and Cs2CO3 (1.4 molar equiv)
the cross-coupling of 4 with (()-2 [4:(()-2 1:1.1 molar
equiv] was conducted in PhMe at 80 °C. In contrast to
arylamination reactions7a this reaction was slow reaching
completion in 34 h and in low yield (25% of the N6-
deoxyadenosine adducts, Scheme 1). Replacement of Cs2-
CO3 with K3PO4 (1.5 molar equiv), under otherwise identical
conditions, also resulted in a slow reaction and low yield
(35 h, 27%). Changing the supporting ligand for Pd was then
considered. Use of the Pd2(dba)3/(()-BINAP/Cs2CO3 system
required for the synthesis of the nucleoside adducts.4a,c,d,5,6
Recently, we7 and others8-10 have developed methods for
Pd-catalyzed C-N bond formation of nucleosides based upon
new catalysis methods.11 Since the bromo nucleosides
required for these reactions are simpler to prepare than the
fluoro analogues, we reasoned that Pd-mediated C-N bond
formation would offer a unique and more facile entry to the
biologically important PAH epoxide-nucleoside adducts.
This letter discloses our preliminary results on the use of Pd
catalysis as well as an analysis of certain mechanistic aspects
of the reactions leading to these adducts.
Although diol epoxides (A and B, Figure 1) are the
metabolically activated forms of the carcinogen benzo[a]-
pyrene (BaP), the tetrahydroepoxide (()-1 (Figure 1) was
(4) For examples see the following and references therein: (a) Chaturvedi,
S.; Lakshman, M. K. Carcinogenesis 1996, 17, 2747-2752. (b) Steinbre-
cher, T.; Becker, A.; Stezowski, J. J.; Oesch, F.; Seidel, A. Tetrahedron
Lett. 1993, 34, 1773-1774. (c) Kim, S. J.; Stone, M. P.; Harris, C. M.;
Harris, T. M. J. Am. Chem. Soc. 1992, 114, 5480-5481. (d) Cooper, M.
D.; Hodge, R. P.; Tamura, P. J.; Wilkinson, A. S.; Harris, C. M.; Harris, T.
M. Tetrahedron Lett. 2000, 41, 3555-3558. (e) Cosman, M.; Ibanez, V.;
Geacintov, N. E.; Harvey, R. G. Carcinogenesis 1990, 11, 1667-1672.
(5) Lakshman, M.; Lehr, R. E. Tetrahedron Lett. 1990, 31, 1547-1550.
(6) Kim, S. J.; Harris, C. M.; Jung, K.-Y.; Koreeda, M.; Harris, T. M.
Tetrahedron Lett. 1991, 32, 6073-6076.
(7) (a) Lakshman, M. K.; Keeler, J. C.; Hilmer, J. H.; Martin, J. Q. J.
Am. Chem. Soc. 1999, 121, 6090-6091. (b) Reviewed in: Lakshman, M.
K. J. Organomet. Chem. 2002, 653, 234-251.
(8) (a) De Riccardis, F.; Bonala, F.; Johnson, F. J. Am. Chem. Soc. 1999,
121, 10453-10460. (b) De Riccardis, F.; Johnson, F. Org. Lett. 2000, 2,
293-295. (c) Bonala, R.; Shishkina, I. G.; Johnson, F. Tetrahedron Lett.
2000, 41, 7281-7284.
(9) (a) Harwood, E. A.; Hopkins, P. B.; Sigurdsson, S. T. J. Org. Chem.
2000, 65, 2959-2964. (b) Harwood, E. A.; Sigurdsson, S. T.; Edfeldt, N.
B. F.; Reid, B. R.; Hopkins, P. B. J. Am. Chem. Soc. 1999, 121, 5081-
5082.
(10) (a) Wang, Z.; Rizzo, C. J. Org. Lett. 2001, 3, 565-568. (b)
Schoffers, E.; Olsen, P. D.; Means, J. C. Org. Lett. 2001, 3, 4221-4223.
(c) Meier, C.; Gra¨sl, S. Synlett 2002, 802-804.
Figure 1. Structures of the BaP diol and tetrahydro epoxides, the
amino benzoates derived by a trans ring opening of these as well
as halo nucleosides utilized in this study.
(11) For recent review articles see the following: (a) Hartwig, J. F. Synlett
1997, 329-340. (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046-
2067. (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805-818. (d) Hartwig, J. F. Acc. Chem. Res. 1998,
31, 852-860. (e) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999,
576, 125-146.
(12) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J. C.; Dinh,
Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am. Chem. Soc. 2001, 123, 7779-
7787.
chosen as the experimental prototype for several reasons.
(a) Epoxide (()-1 is simpler to prepare compared to the diol
epoxides. (b) In contrast to the four chiral centers in A and
B, (()-1 has only two but this model is representative of
both A and B. This feature simplifies assessment of chiral
integrity. (c) Since B is carcinogenic but not 1, comparative
40
Org. Lett., Vol. 5, No. 1, 2003