C O M M U N I C A T I O N S
Scheme 1 a
a (a) 2,4,6-Trichlorobenzoyl chloride, Et3N, THF, 40 °C, then 4, DMAP, toluene, 40 °C, 94%; (b) TBAF, THF, room temperature, 99%; (c) 6, CSA,
CH2Cl2, room temperature; (d) HMDS, TMSI, CH2Cl2, 0 °C, 78% (two steps); (e) DIBALH, CH2Cl2, -78 °C, then (CH2ClCO)2O, DMAP, pyridine, -78
°C to room temperature, 88%; (f) BF3‚OEt2, MS4A, CH3CN, -40 to 0 °C, 87% (2:9 ) 2:1); (g) 10, CH2Cl2, room temperature, 88%; (h) CSA, CH2Cl2-
MeOH, 30 °C; (i) TBSCl, imidazole, CH2Cl2, 0 °C, 80% (two steps); (j) TPAP, NMO, MS4A, CH2Cl2, room temperature, 96%; (k) H2, Pd-C, EtOAc, room
temperature; (l) H2, Pd(OH)2-C, EtOAc, room temperature; (m) PvCl, DMAP, CH2Cl2, room temperature; (n) TIPSOTf, 2,6-lutidine, DMF, 65 °C, 80%
(four steps); (o) LiHMDS, TMSCl, Et3N, THF, -78 °C; (p) Pd(OAc)2, CH3CN, 92% (two steps); (q) MeMgI, toluene, -78 °C; (r) TBSOTf, 2,6-lutidine,
CH2Cl2, room temperature; (s) CSA, CH2Cl2-MeOH, 0 °C, 82% (three steps); (t) PCC, MS4A, CH2Cl2, room temperature; (u) CI4, PPh3, CH2Cl2, 0 °C,
92% (two steps); (v) Zn-Cu, AcOH, THF-MeOH, 0 °C; (w) DIBALH, CH2Cl2, -78 °C, 100% (two steps); (x) SiF4, CH2Cl2-CH3CN, 0 °C; (y) 19,
Pd2dba3‚CHCl3, P(furyl)3, CuI, DMSO, 40 °C, 72% (two steps).
(5) During our study, very recently the Sasaki and Tachibana group reported
Acknowledgment. We thank Professor T. Yasumoto (Tohoku
the first total synthesis of 1. (a) Fuwa, H.; Sasaki, M.; Satake, M.;
University) for providing the 1H NMR spectrum of 1, and Professor
Tachibana, K. Org. Lett. 2002, 4, 2981-2984. (b) Fuwa, H.; Kainuma,
N.; Tachibana, K.; Sasaki, M. J. Am. Chem. Soc., in press.
(6) For the preparation of 3 and 4, see Supporting Information.
(7) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989-1993.
M. Hirama (Tohoku University) for supporting the measurement
of MALDI TOF mass spectra. This work was financially supported
by the Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan.
(8) Kadota, I.; Sakaihara, T.; Yamamoto, Y. Tetrahedron Lett. 1996, 37,
3195-3198.
(9) Acetic anhydride was used in the original procedure, see: (a) Dahanukar,
V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317-8320. (b)
Rychnovsky, S. D.; Hu, Y.; Ellsworth, B. Tetrahedron Lett. 1998, 39,
7271-7274. (c) Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000,
65, 191-198. (d) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2,
1217-1219. (e) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem.
2001, 66, 4679-4686.
Supporting Information Available: Schemes for the preparation
of compounds 3 and 4. Experimental procedures and characterization
data for all new compounds reported in Scheme 1. Copies of 1H NMR
spectra for selected compounds (PDF). This material is available free
(10) The reaction of the corresponding R-acetoxy ether gave the undesired
isomer 9, predominantly. Perhaps, the poor leaving ability of acetyl group,
in comparison with chloroacetoxy group, would force the reaction course
to proceed through the SN2 pathway. The D ring of the desired isomer 2,
in which all of the substituents take an equatorial position, is more
thermally stable than that of 9. The details of the mechanism are under
investigation. We appreciate a referee who pointed out the above problems,
and we also thank Professor T. Oishi (Osaka University) and Professor
M. Inoue (Tohoku University) for suggesting the use of the chloroacetyl
group.
References
(1) For recent reviews, see: (a) Shimizu, Y. Chem. ReV. 1993, 93, 1685-
1698. (b) Yasumoto, T.; Murata, M. Chem. ReV. 1993, 93, 1897-1909.
(2) For recent reviews, see: (a) Alvarez, E.; Candenas, M.-L.; Pe´rez, R.;
Ravelo, J. L.; Mart´ın, J. D. Chem. ReV. 1995, 95, 1953-1980. (b)
Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1996, 35, 589-607. (c)
Mori, Y. Chem.-Eur. J. 1997, 3, 849-852. Also see: (d) Hoberg, J. O.
Tetrahedron 1998, 54, 12630-12670.
(3) (a) Satake, M.; Murata, M.; Yasumoto, T. J. Am. Chem. Soc. 1993, 115,
361-362. (b) Morohashi, A.; Satake, M.; Yasumoto, T. Tetrahedron Lett.
1998, 39, 97-100.
(4) (a) Kadota, I.; Park, C.-H.; Ohtaka, M.; Oguro, N.; Yamamoto, Y.
Tetrahedron Lett. 1998, 39, 6365-6368. (b) Kadota, I.; Kadowaki, C.;
Yoshida, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 6369-6372. (c)
Kadota, I.; Ohno, A.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett.
1998, 39, 6373-6376. (d) Fuwa, H.; Sasaki, M.; Tachibana, K. Tetra-
hedron Lett. 2000, 41, 8371-8375. (e) Sakamoto, Y.; Matsuo, G.;
Matukura, H.; Nakata, T. Org. Lett. 2001, 3, 2749-2752. (f) Cox, J. M.;
Rainier, J. D. Org. Lett. 2001, 3, 2919-2922. (g) Fuwa, H.; Sasaki, M.;
Tachibana, K. Tetrahedron 2001, 57, 3019-3033. (h) Fuwa, H.; Sasaki,
M.; Tachibana, K. Org. Lett. 2001, 3, 3549-3552. (i) Kadota, I.; Ohno,
A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 6702-
6703. (j) Kadota, I.; Kadowaki, C.; Park, C.-H.; Takamura, H.; Sato, K.;
Chan, P. W. H.; Thorand, S.; Yamamoto, Y. Tetrahedron 2002, 58, 1799-
1816. (k) Kadota, I.; Takamura, H.; Sato, K.; Yamamoto, Y. J. Org. Chem.
2002, 67, 3494-3498. (l) Kadota, I.; Ohno, A.; Matsuda, K.; Yamamoto,
Y. J. Am. Chem. Soc. 2002, 124, 3562-3566.
(11) For the determination of the stereochemistries of 2 and 9, see Supporting
Information.
(12) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(13) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
(14) Feng, F.; Murai, A. Chem. Lett. 1992, 1587-1590.
(15) The palladium-catalyzed hydrogenolysis of diiodoalkenes with Bu3SnH
was not selective, see: Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji,
J. J. Org. Chem. 1998, 63, 8965-8975.
(16) Gavina, F.; Luis, S. V.; Ferrer, P.; Costero, A. M.; Marco, J. A. J. Chem.
Res. 1986, 330-331.
(17) Corey, E. J.; Yi, K. Y. Tetrahedron Lett. 1992, 33, 2289-2290. The other
attempts for desilylating the protected gambierol having the triene side
chain, for example, the use of TBAF, TAS-F, and SiF4, resulted in failure
as reported by Sasaki, see ref 5.
(18) Fuji Silysia silica gel was used for the purification of 1. Although the
detail is not clear, the use of Kanto Chemical silica gel (neutral) caused
partial isomerization of 1. See Supporting Information.
JA028726D
9
J. AM. CHEM. SOC. VOL. 125, NO. 1, 2003 47