C O M M U N I C A T I O N S
Scheme 1. Mechanistic Proposal for Au(I)-Catalyzed
Cycloisomerization
On the basis of these data, we propose the process detailed in
Scheme 1 as the most likely mechanism for this transformation.
Coordination of cationic gold(I) to the alkyne followed by nucleo-
philic addition of the pendant olefin produces cyclopropylcarbinyl13
cation 27, which may have some gold(I) carbene character (28).
The bicyclo[3.1.0]hexene product is generated by a 1,2-hydrogen
shift onto a cation or a gold(I) carbene. The stereoselectivity and
stereospecificity of the reaction can be accounted for by considering
half-chair transition states, with the large groups occupying
pseudoequatorial positions, similar to those proposed for the
acetylenic Cope rearrangement.14
The proposed mechanism suggests that cationic intermediate 27/
28 could potentially be trapped in the presence of a nucleophile.
In accord with this hypothesis, cyclohexenyl methyl ether 30 was
produced when the gold(I)-catalyzed reaction of enyne 29 was
carried out in methanol (eq 4).15 Notably, for this reaction the
presence of a quaternary carbon at the propargylic position is
necessary to prevent competing formation of the bicyclo[3.1.0]-
hexene; however, in the absence of nucleophile, a 1,2-alkyl shift
is observed. For example, 1,5-enynes 31a and 31b undergo a gold-
(I)-catalyzed tandem cycloisomerization-ring enlargement process16
to afford tricyclic structure 32a and 32b in 72 and 66% yield,
respectively (eq 5).
References
(1) For reviews on cycloisomerizations, see: (a) Aubert, C.; Buisine, O.;
Malacria, M. Chem. ReV. 2002, 102, 813. (b) Trost, B. M.; Krische, M.
J. Synlett 1998, 1. (c) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R.
J. Chem. ReV. 1996, 96, 635.
(2) Mazur, M. R.; Potter, S. E.; Pinhas, A. R.; Berson, J. A. J. Am. Chem.
Soc. 1982, 104, 6823.
(3) After submission of this manuscript, the related transition metal-catalyzed
rearrangement of hydroxylated 1,5-enynes (5-en-1-yn-3-ol) was de-
scribed: (a) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem.
Soc. 2004, 126, 8654. (b) Harrak, Y.; Blaszykowski, C.; Bernard, M.;
Cariou, K.; Mainetti, E.; Mourie´s, V.; Dhimane, A.-L.; Fensterbank, L.;
Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656.
(4) (a) Nevado, C.; Ca´rdena, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 8,
2627. (b) Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee,
P. H. Org. Lett. 2002, 4, 4463. (c) Imamura, K.; Yoshikawa, E.;
Gevorgyan, V.; Sudo, T.; Asao, N.; Yamamoto, Y. Can. J. Chem. 2001,
79, 1624. (d) Imamura, K.; Gevorgyan, V.; Yamamoto, Y. Tetrahedron
Lett. 1999, 40, 4081. (e) Maeyama, K.; Iwasawa, N. J. Am. Chem. Soc.
1998, 120, 1928. Allylsilanes as the ene: (f) Imamura, K.; Yoshikawa,
E.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 5339.
(5) For an example using R,â-unsaturated esters as the ene component, see:
(a) Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J.
Org. Chem. 1998, 63, 9158. For a single example using a simple olefin,
see: (b) Ajamian, A.; Gleason, J. L. Org. Lett. 2003, 5, 2409.
(6) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
(7) In general, lower yields of bicyclo[3.1.0]hexenes were obtained when PPh3-
AuOTf (generated from PPh3AuMe/TfOH or PPh3AuCl/AgOTf) was
employed as the catalyst.
(8) For a review on bicyclo[n.1.0]alkenes, see: Billups, W. E.; Haley, M.
M.; Lee, G. Chem. ReV. 1989, 89, 1147.
(9) Kenndey-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 4526.
(10) For Au-catalyzed addition of electron-rich arenes to alkynes and alkenes,
see: (a) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485. (b)
Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L. AdV. Synth. Catal. 2003,
345, 1247. (c) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669.
(11) Major diastereomer was assigned on the basis of the NOE measurements
detailed in Supporting Information.
(12) For a recent report of chirality transfer in the rearrangement of olefin
epoxides to bicyclo[3.1.0]hexanes, see: Hodgson, D. M.; Chung, Y. K.;
Paris, J.-M. J. Am. Chem. Soc.2004, 126, 8664.
(13) A related cyclopropylcarbinyl cation is proposed in the PtCl2-catalyzed
cycloisomerization of 1,6-enynes: (a) Fu¨rstner, A.; Szillat, H.; Gabor,
B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. (b) Fu¨rstner, A.;
Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. See also: (c)
Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402.
(14) (a) Owens, K. A.; Berson, J. A. J. Am. Chem. Soc. 1990, 112, 5973. (b)
Black, K. A.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1998, 120,
5622.
(15) For a related process with 1,6-enynes, see: (a) Nishizawa, M.; Yadav, V.
K.; Skwarzynski, M.; Takao, H.; Imagawa, H.; Sugihara, T. Org. Lett.
2003, 5, 1609. (b) Me´ndez, M.; Mun˜oz, M. P.; Nevado, C.; Ca´rdenas, D.
J.; Eschavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511.
(16) For recent examples of catalytic tandem processes involving ring
expansion, see: (a) Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald,
S. L. J. Am. Chem. Soc. 2004, 126, 3529. (b) Davies, H. M. L.; Dai, X.
J. Am. Chem. Soc. 2004, 126, 2692. (c) Overman, L. E.; Pennington, L.
D. J. Org. Chem. 2003, 68, 7143.
In conclusion, we have developed a transition metal-catalyzed
rearrangement of 1,5-enynes that produces bicyclo[3.1.0]hexenyl
products that are isomeric to those produced as intermediates in
the thermal reaction. The gold(I)-catalyzed reaction can be con-
ducted under “open-flask” conditions and as such can be combined
with our rhenium-catalyzed propargylic allylation17 to provide a
one-pot synthesis of bicyclo[3.1.0]hexenes from propargyl alcohols
(eq 6). This carbon-carbon bond-forming reaction provides a
stereospecific method for the synthesis of a variety of cyclopropane
containing carbocycles, including tricyclic structures prepared by
a tandem cycloisomerization-ring enlargement reaction. Develop-
ment of gold(I)-catalyzed18 carbon-carbon bond-forming reactions,
including an enantioselective version of this cycloisomerization, is
ongoing and will be reported in due course.
Acknowledgment. We gratefully acknowledge the University
of California, Berkeley, Merck Research Laboratories, and Amgen,
Inc., for financial support. The Center for New Directions in Organic
Synthesis is supported by Bristol-Myers Squibb as a Sponsoring
Member and Novartis Pharma as a Supporting Member.
(17) Luzung, M. R.; Toste, F. D. Toste J. Am. Chem. Soc. 2003, 125, 15760.
(18) For a review of Au-catalyzed reactions, see: (a) Dyker, G. Angew. Chem.,
Int. Ed. 2000, 39, 4237. (b) Hashmi, A. S. K. Gold Bull. 2003, 23, 3.
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
JA046248W
9
J. AM. CHEM. SOC. VOL. 126, NO. 35, 2004 10859