ORGANIC
LETTERS
2003
Vol. 5, No. 1
35-38
1,6-Asymmetric Induction in
Boron-Mediated Aldol Reactions:
Application to a Practical Total
Synthesis of (+)-Discodermolide
Ian Paterson,* Oscar Delgado, Gordon J. Florence, Isabelle Lyothier,
Jeremy P. Scott, and Natascha Sereinig
UniVersity Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.
Received October 11, 2002
ABSTRACT
By relying solely on substrate-based stereocontrol, a practical total synthesis of the microtubule-stabilizing anticancer agent (+)-discodermolide
has been realized. This exploits a novel aldol bond construction with 1,6-stereoinduction from the boron enolate of (Z)-enone 3 in addition to
aldehyde 2. The 1,3-diol 7 is employed as a common building block for the C −C , C −C , and C −C24 subunits.
1
5
9
16
17
(+)-Discodermolide (1) is a unique cytotoxic polyketide
isolated from the Caribbean deep-sea sponge Discodermia
dissoluta.1,2 Biological screening demonstrated cell cycle
arrest at the G2/M phase in a variety of human and murine
cancer cell lines.3 Discodermolide is now recognized as a
member of a group of antimitotic agents (including Taxol,
epothilones, eleutherobin, and laulimalide) known to act by
microtubule stabilization,4 which makes it a highly promising
candidate as a new chemotherapeutic agent for the treatment
of Taxol-resistant breast, ovarian, and colon cancer and other
multi-drug-resistant cancers.
syntheses,5 including one by our group,6 have been com-
pleted. Despite these efforts, there continues to be a pressing
demand for developing a more practical and scaleable route
to enable clinical development. With our existing total
synthesis in hand,6 we sought further refinements by inter
alia reducing the total number of steps, eliminating the use
of any chiral reagents or auxiliaries, and exploring a novel
endgame strategy. By exploiting remote 1,6-asymmetric
induction in boron-mediated aldol reactions of (Z)-enones,
we now report a highly convergent and practical total
At present, total synthesis provides the only viable means
of accessing useful quantities of discodermolide, and several
(5) (a) Nerenberg, J. B.; Hung, D. T.; Schreiber, S. L. J. Am. Chem.
Soc. 1996, 118, 11054. (b) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.;
Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 12621. (c) Smith, A. B., III;
Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y. P.; Arimoto,
H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654. (d)
Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.;
Arimoto, H. Org. Lett. 1999, 1, 1823. (e) Smith, A. B., III; Qiu, Y. P.;
Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117, 12011. (f) Harried,
S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. 1997, 62,
6098. (g) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885. (h)
Halstead, D. P. Ph.D. Thesis, Harvard University, Cambridge, 1998.
(6) (a) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig,
N. J. Am. Chem. Soc. 2001, 123, 9535. (b) Paterson, I.; Florence, G. J.;
Gerlach, K.; Scott, J. P. Angew. Chem., Int. Ed. 2000, 39, 377. (c) Paterson,
I.; Florence, G. J. Tetrahedron Lett. 2000, 41, 6935.
(1) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K.
J. Org. Chem. 1990, 55, 4912. Additions and corrections: J. Org. Chem.
1991, 56, 1346.
(2) Gunasekera, S. P.; Pomponi, S. A.; Longley, R. E. Patent No.
US5840750: US, Nov 24, 1998.
(3) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.;
Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35,
243.
(4) For recent reviews, see: (a) Altmann, K. H. Curr. Opin. Chem. Biol.
2001, 5, 424. (b) He, L. F.; Orr, G. A.; Horwitz, S. B. Drug DiscoVery
Today 2001, 6, 1153. (c) Stachel, S. J.; Biswas, K.; Danishefsky, S. J. Curr.
Pharm. Design 2001, 7, 1277.
10.1021/ol0270780 CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/13/2002