10.1002/anie.202007406
Angewandte Chemie International Edition
COMMUNICATION
[2]
A. J. L. Pombeiro, M. F. C. Guedes da Silva in Alkane Functionalization,
J. Wiley & Sons, Hoboken, NJ, USA, 2019.
V12(Br2) gives 2,3-dibromopentane and 1,2-dibromopentane
(Table S3). The diastereoselectivity of 2,3-dibromopentane
obtained with V12(Br2) and the mixture of 2- and 3-bromopentane
is unique, showing 83% of the threo isomer.[42] In the radical
mechanism with V12(DCE)-Br2, 6.7 μmol of 2,3-dibromopentane,
with the ratio of the threo and erythro isomers being 30:70. The
reactivity of 1-bromopentane with V12(Br2) is low and no
dibromopentanes were obtained. Going back to the bromination
of pentane, the distribution of the selectivity for threo-2,3-
dibromopentane is 44%. This values indicate that ca. 50% of Br2
inserted into V12 and ca. 50% of Br2 external to V12 reacted. The
reaction of V12(Br2) with 2-methylbutane gave trace amount of
monobrominated products and 1.1 μmol of dibrominated products,
while Br2 gave 2-bromo-2-methylbutane as a main product.
In addition, V12(Br2) reacted with n-butane and propane to
give 2-bromobutane 2,3-dibromobutane, and 1,2-dibromobutane,
and 2-bromopropane and 1,2-dibromopropane, respectively
(Table S2). The diastereoselectivity of 2,3-dibromobutane is also
unique, showing 70% of the threo isomer. The reactivity of butane
and propane with V12(Br2) is higher than that of pentane due to
the size of alkanes.[43]
[3]
[4]
X. Tang, X. Jia, Z. Huang, Chem. Sci., 2018, 9, 288-299.
Y. Manabe, Y. Kitawaki, M. Nagasaki, K. Fukase, H. Matubara Y. Hino,
T. Fukuyama, I. Ryu, Chem. Eur. J. 2014, 20, 12750-12753.
R. Lin, A. P. Amrute, J. Pérez-Raírez, Chem. Rev. 2017, 117, 4182-4247.
G. A. Olah, Acc. Chem. Res. 1987, 20, 422-428.
[5]
[6]
[7]
[8]
[9]
G. A. Olar, Y. K. Mo, J. Am. Chem. Soc. 1972, 94, 6864-6865.
P. Batamack, I. Bucsi,A. Molnar, G. A. Olah, Catal. Lett. 1994, 25, 11−19.
I. Bucsi, G. A. Olah, Catal. Lett. 1992, 16, 27−38;
[10] V. Degirmenci, A. Yilmaz, D. Uner, Catal. Today 2009, 142, 30−33;
[11] P. T. D. Batamack, T. Mathew, G. K. S. Prakash, J. Am. Chem. Soc.
2017, 139, 18078-18083.
[12] H. Joo, D. Kim, K. S. Lim, Y. N. Choi, K. Na, Solid State Sci. 2018, 77,
74-80.
[13] D. W. Stephan, G. F. Erker, Angew. Chem. 2010, 122, 50-81; Angew.
Chem. Int. Ed. 2010, 49, 46-76.
[14] H. Lee, Y. N. Choi, D.-W. Lim, Md. M. Rahman, Y.-I. Kim, I. H. Cho, H.
W. Kang, J.-H. Seo, C. Jeon, K. B. Yoon, Angew. Chem. 2015, 127,
13272-13276; Angew. Chem. Int. Ed. 2015, 54, 13080-13084.
[15] Themed issue on Polyoxometalates, C. L. Hill, Chem. Rev. 1998, 98, 1–
390.
[16] Themed issue on Polyoxometalate cluster science, L. Cronin, A. Müller,
Chem. Soc. Rev. 2012, 41, 7325–7648.
In conclusion, by the reaction of V12-free with Br2, one of
the VO5 square pyramids flipped to accept the inserted Br2. Owing
to the electrophilicity of the interior of the V12 bowl, the inserted
Br2 was polarized, as detected by IR spectroscopy. To the best of
our knowledge, this is the first reported spectroscopic evidence of
polarized Br2. The polarized Br2 in V12 acted as an electrophilic
reagent and showed unique reactivity toward pentane, which is
clearly different from the radical reaction of free Br2. In this
demonstration, tetra-n-butyl ammonium salts of V12 without
pores in the solid was used, and owing to the flexibility of the n-
butyl chains, Br2 and the substrate reached the active site of the
opened mouse of V12. To improve the reactivity, 3-dimensional
structure control with pore is desired, and for the application of
more difficult methane bromination, the C−H activation site should
be composited near the V12 bowl. Thus, the well-defined
electrophilic molecule-sized cavity polarizes Br2. The production
[17] C. Streb in Polyoxometalate-Based Assemblies and Functional Materials
(Eds.: Y.-F. Song) Springer, Cham, 2018, pp. 31-47.
[18] Y. Hayashi, Coord. Chem. Soc. 2011, 225, 2270-2280.
[19] A. S. Cherevan, S. P. Nandan, I, Roger, R. Liu, C. Streb, D. Eder, Adv.
Sci. 2020, 7, 1903511.
[20] R. W. Pow, W. Xuan, D. Long, N. L. Bell, L. Cronin, Chem. Sci. 2020, 11,
2388-2393.
[21] N. Watfa, D. Melgar, M. Hauas, F. Taulelle, A. Hijazi, D. Naoufal, J. B.
Avalos, S. Floquet, C. Mo, E. Cadot, J. Am. Chem. Soc. 2015, 137, 5845-
5851.
[22] V. W. Day, W. G. Klemperer, O. M. Yaghi, J. Am. Chem. Soc. 1989, 111,
5959–5961.
[23] N. Kawanami, T. Ozeki, A. Yagasaki, J. Am. Chem. Soc. 2000, 122,
1239-1240.
[24] S. Kuwajima, Y. Ikinobu, D. Watanabe, Y.; Kikukawa, Y. Hayashi, A.
Yagasaki, ACS Omega, 2017, 2, 268-275.
[25] S. Kuwajima, Y. Kikukawa, Y. Hayashi, Chem. Asian J. 2017, 12, 1909-
1914.
of
a reaction field at the molecular level gives definite
[26] M. Rohmer, J. Devemy, R. Wiest, B. Marc, J. Am. Chem. Soc. 1996, 118,
13007-13014.
spectroscopic data, which is essential to explaining the reaction
mechanism, and leads to further development of a reaction field.
[27] Y. Kikukawa, H. Kitajima, Y. Hayashi, Dalton Trans. 2019, 48, 7138-7143.
[28] S. Kuwajima, Y. Ikinobu, D. Watanabe, Y.; Kikukawa, Y. Hayashi, A.
Yagasaki, ACS Omega, 2017, 2, 268-275.
[29] P. Metrangolo, G. Resnati in Halogen Bonding, Springer-Verlag Berlin
Heidelberg, 2008.
Acknowledgements
[30] C. K. Prout, J. D. Wright, Angew. Chem. 1968, 80, 688-697; Angew.
Chem. Int. Ed. 1968, 7, 659-746
This work was supported by JST PRESTO Grant (No.
JPMJPR1655), Nippon Sheet Glass Foundation for Materials
Science and Engineering, JSPS KAKENHI Grant (No.
JP18K14239), and Core-to-Core Program. The XAFS
measurements in this work have been performed under the
approval of the High Energy Accelerator Research Organization
in Japan (Proposal No. 2017G713).
[31] N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G.
Pritchard, J. Chem. Soc., Chem. Commun. 1992, 355-356.
[32] H. Bock, Z. Havlas, A. Rauschenbach, C. Näther, M. Kleine, Chem
Commun, 1996, 1529-1530.
[33] L. Koskinen, S. Jääskeläinen, P. Hirva, M. Haukka, Cryst. Growth Des.
2015, 15, 1160−1167.
[34] H. S. El-Sheshtwy, B. S. Bassil, K. I. Assaf, U. Kortz, W. M. Nau, J. Am.
Chem. Soc. 2012, 134, 19935-19941.
[35] Y. Kikukawa, K. Seto, S. Uchida, S. Kuwajima, Y. Hayashi, Angew.
Chem. 2018, 130, 16283–16287; Angew. Chem. Int. Ed. 2018, 57,
16051-16055.
Keywords: Bromine Polarization, Polyoxometalates, Vanadium,
Alkane Bromination, Molecular Container
[36] The Br−Br stretching vibration of {n-Bu4N}Br3 is observed at 180 cm−1 in
the IR spectrum (Figure S3). J. S. Zambounis, E. I. Kamitsos,A. P. Patsis,
G. C. Papavassiliou, J. Raman Spectrosc. 1992, 23, 81-85.
[1]
C. L. Hill in Activation and Functionalization of Alkanes, Wiley, New York,
1989.
This article is protected by copyright. All rights reserved.