Synthesis of 2-Amido Substituted Furans
(d, 1H, J ) 3.2 Hz), 6.34 (m, 1H), 7.04 (d, 1H, J ) 0.8 Hz),
and 7.61 (br s, 1H); 13C NMR (CDCl3, 100 MHz) δ 17.9, 28.2,
36.5, 95.2, 111.5, 127.0, 129.0, 135.2, 145.0, and 168.8. Anal.
Calcd for C10H13NO2: C, 67.02; H, 7.31; N, 7.82. Found: C,
67.30; H, 7.32; N, 7.68.
1409, 1301, and 1235 cm-1; 1H NMR (CDCl3, 400 MHz) δ 2.08-
2.24 (m, 2H), 2.38 (s, 3H), 2.49-2.60 (m, 2H), 3.71-3.84 (m,
2H), 6.20-6.30 (m, 1H), and 6.42-6.52 (m, 1H); 13C NMR
(CDCl3, 100 MHz) δ 14.7, 17.5, 31.0, 48.3, 110.1, 121.2, 131.6,
137.8, and 171.5. Anal. Calcd for C9H11NOS: C, 59.64; H, 6.12;
N, 7.73. Found: C, 59.60; H, 6.13; N, 7.72.
F u r a n -2-ca r boxylic Acid ter t-Bu tyla m id e (20). To a
suspension of 0.25 g (2.8 mmol) of CuCN in 7 mL of THF at
-78 °C was added dropwise 3.7 mL (5.6 mmol) of a 1.5 M
t-BuLi solution and the mixture was stirred at -78 °C for 1 h.
To the above solution was added dropwise a solution contain-
ing 0.38 g (2.8 mmol) of azide 9 in 15 mL of THF. The mixture
was warmed to room temperature, diluted with ether, quenched
with aqueous NH4Cl solution, and extracted with ether. The
organic layer was dried over Na2SO4 and the solvent was
evaporated under reduced pressure. The residue was subjected
to flash silica gel chromatography to give 0.26 g (58%) of furan-
2-carboxylic acid tert-butylamide (20) as a white solid:39 mp
N-Th ia zol-2-ylp yr r olid in on e (30). Using the general
procedure for Cu(I)-catalyzed C-N cross-couplings described
above, 2-bromothiazole (29) and 2-pyrrolidinone afforded 0.1
g (58%) of 30 as beige crystals: mp 83-84 °C; IR (film) 3129,
3078, 1696, 1506, 1460, 1383, and 1173 cm-1; 1H NMR (CDCl3,
400 MHz) δ 2.10-2.30 (m, 2H), 2.65 (t, 2H, J ) 8.0 Hz), 4.12
(t, 2H, J ) 7.2 Hz), 6.97 (d, 1H, J ) 3.8 Hz), and 7.43 (d, 1H,
J ) 3.8 Hz); 13C NMR (CDCl3, 100 MHz) δ 18.0, 31.6, 47.8,
113.4, 137.4, 157.7, and 173.3. Anal. Calcd for C7H8N2OS: C,
49.98; H, 4.79; N, 16.65. Found: C, 50.08; H, 4.97; N, 16.66.
N-F u r a n -3-ylben za m id e (31). Using the general proce-
dure for Cu(I)-catalyzed C-N cross-couplings described above,
3-bromofuran and benzamide afforded 0.17 g of 31 (98%): mp
147-148 °C (lit.41 mp 141-142 °C); IR (film) 3278, 3109, 1650,
1568, and 1158 cm-1; 1H NMR (CDCl3, 400 MHz) δ 6.42-6.48
(m, 1H), 7.30-7.35 (m, 1H), 7.37-7.45 (m, 2H), 7.46-7.54
(m, 1H), 7.79-7.86 (m, 2H), 8.14-8.20 (m, 1H), and 8.23
(br s, 1H); 13C NMR (CDCl3, 100 MHz) δ 104.8, 124.3, 127.0,
128.7, 131.8, 132.8, 133.7, 141.5, and 165.1. Anal. Calcd for
C11H9NO2: C, 70.58; H, 4.85; N, 7.48. Found: C, 70.38; H, 4.84;
N, 7.44.
N-F u r a n -3-yl-o-tolyla m id e (32). Using the general pro-
cedure for Cu(I)-catalyzed C-N cross-couplings described
above, 3-bromofuran and o-tolylamide gave 0.17 g (86%) of 32:
mp 139-140 °C; IR (film) 1644, 1562, and 1163 cm-1; 1H NMR
(CDCl3, 300 MHz) δ 2.41 (s, 3H), 6.34 (d, 1H, J ) 1.2 Hz),
7.10-7.25 (m, 3H), 7.26-7.40 (m, 2H), 7.88 (br s, 1H), and
8.08 (s, 1H); 13C NMR (CDCl3, 75 MHz) δ 19.7, 104.6, 124.2,
125.7, 126.7, 130.2, 131.1, 132.6, 135.3, 136.5, 141.4, and 167.4.
Anal. Calcd for C12H11NO2: C, 71.63; H, 5.51; N, 6.96. Found:
C, 71.62; H, 5.54; N, 6.94.
97-98 °C; IR (KBr) 3317, 1644, and 1537 cm-1 1H NMR
;
(CDCl3, 400 MHz) δ 1.46 (s, 9H), 6.20 (br s, 1H), 6.47 (dd, 1H,
J ) 3.4 and 1.8 Hz), 7.05 (dd, 1H, J ) 3.4 and 1.0 Hz), and
7.39 (dd, 1H, J ) 1.8 and 1.0 Hz); 13C NMR (CDCl3, 100 MHz)
δ 28.9, 51.4, 112.0, 113.4, 143.2, 148.7, and 157.7. Anal. Calcd
for C9H13NO2: C, 64.65; H, 7.84; N, 8.38. Found: C, 64.56; H,
7.90; N, 8.38.
Gen er a l P r oced u r e for Cu (I)-Ca t a lyzed C-N Cr oss-
Cou p lin gs. To a sample of CuI (0.1 mmol, 10 mol %) and
K2CO3 (4.3 mmol) or K3PO4 (2.1 mmol) under argon was added
1,4-dioxane (3 mL) followed by N,N′-dimethylethylenediamine
or (()-trans-N,N′-dimethylcyclohexanediamine40 (0.1 mmol, 10
mol %), the heteroaromatic halide (1.0 mmol), and the ap-
propriate amide (1.2 mmol). The reaction mixture was heated
at 110 °C for 24 h, cooled to 25 °C, diluted with CH2Cl2 (5 mL),
filtered through a short plug of silica gel, and concentrated
under reduced pressure. The crude residue was purified by
flash chromatography to give the desired product.
N-Th ien -3-yloxa zolid on e (23). Using the general proce-
dure for Cu(I)-catalyzed C-N cross-couplings described above,
3-bromothiophene (21) and 2-oxazolidone gave 0.17 g (99%)
of N-thien-3-yloxazolidone (23): mp 91-92 °C; IR (film) 1731,
1115, and 1041 cm-1; 1H NMR (CDCl3, 400 MHz) δ 3.98-4.05
(m, 2H), 4.42-4.51 (m, 2H), 6.98 (dd, 1H, J ) 3.2 and 1.6 Hz),
7.30 (dd, 1H, J ) 5.3 and 3.2 Hz), and 7.41 (dd, 1H, J ) 5.3
and 1.6 Hz); 13C NMR (CDCl3, 100 MHz) δ 45.5, 61.6, 107.2,
119.6, 125.5, 136.7, and 154.9. Anal. Calcd for C7H7NO2S: C,
49.69; H, 4.17; N, 8.28. Found: C, 49.48; H, 4.16; N, 8.23.
N-5-F or m ylth ien -3-yloxa zolid on e (24). Using the gen-
eral procedure for Cu(I)-catalyzed C-N cross-couplings de-
scribed above, 4-bromothiophene-2-carboxaldehyde (22) and
2-oxazolidone afforded 0.17 g (85%) of 24 as a white solid: mp
171-172 °C; IR (film) 1734, 1661, 1552, 1455, 1401, 1262, and
N-F u r a n -3-ylp yr r olid in on e (33). Using the general pro-
cedure for Cu(I)-catalyzed C-N cross-couplings described
above, 3-bromofuran and 2-pyrrolidinone gave 0.12 g (80%) of
33: mp 74-75 °C; IR (film) 1681, 1593, 1425, 1316, and
1
1173 cm-1; H NMR (CDCl3, 300 MHz) δ 2.08-2.24 (m, 2H),
2.44-2.56 (m, 2H), 3.61-3.73 (m, 2H), 6.63-6.70 (m, 1H),
7.28-7.35 (m, 1H), and 7.77-7.85 (m, 1H); 13C NMR (CDCl3,
75 MHz) δ 18.2, 31.3, 47.7, 103.9, 126.5, 130.9, 141.8, and
173.0. Anal. Calcd for C8H9NO2: C, 63.56; H, 6.00; N, 9.27.
Found: C, 63.65; H, 6.05; N, 9.30.
P en t-4-en oic Acid F u r a n -3-yla m id e (34). Using the
general procedure for Cu(I)-catalyzed C-N cross-couplings
described above, 3-bromofuran and 4-pentenamide42 afforded
0.14 g (82%) of pent-4-enoic acid furan-3-ylamide (34): mp
1
1111 cm-1; H NMR (CDCl3, 400 MHz) δ 3.98-4.10 (m, 2H),
75-76 °C; IR (film) 1656, 1568, and 1168 cm-1 1H NMR
;
4.42-4.54 (m, 2H), 7.64-7.78 (m, 1H), 8.28 (d, 1H, J ) 2.0
Hz), and 9.92 (d, 1H, J ) 1.2 Hz); 13C NMR (CDCl3, 100 MHz)
δ 45.1, 62.2, 116.9, 128.6, 138.0, 142.2, 154.7, and 184.4. Anal.
Calcd for C8H7NO3S: C, 48.72; H, 3.58; N, 7.10. Found: C,
48.87; H, 3.71; N, 6.88.
(CDCl3, 400 MHz) δ 2.37-2.52 (m, 4H), 4.99-5.15 (m, 2H),
5.79-5.92 (m, 1H), 6.29 (dd, 1H, J ) 1.9 and 0.6 Hz), 7.29 (t,
1H, J ) 1.9 Hz), and 8.00-8.20 (m, 1H); 13C NMR (CDCl3, 75
MHz) δ 29.4, 35.6, 104.6, 115.8, 124.1, 132.5, 136.6, 141.3, and
170.3; Anal. Calcd for C9H11NO2: C, 65.44; H, 6.71; N, 8.48.
Found: C, 65.17; H, 6.70; N, 8.50.
N-Th ien -2-ylp yr r olid in on e (27). Using the general pro-
cedure for Cu(I)-catalyzed C-N cross-couplings described
above, 2-bromothiophene (25) and 2-pyrrolidinone gave 0.17
g (99%) of N-thien-2-ylpyrrolidinone (27) as a white solid: mp
116-117 °C (lit.24 mp 116-117 °C); 1H NMR (CDCl3, 400 MHz)
δ 2.07-2.29 (m, 2H), 2.57 (t, 2H, J ) 8.1 Hz), 3.82 (t, 2H, J )
7.2 Hz), 6.48 (dd, 1H, J ) 3.6 and 1.2 Hz), and 6.75-6.95 (m,
2H).
N-5-Meth ylth ien -2-ylp yr r olid in on e (28). Using the gen-
eral procedure for Cu(I)-catalyzed C-N cross-couplings de-
scribed above, 2-iodo-5-methylthiophene (26) and 2-pyrroli-
dinone gave 0.16 g (90%) of N-5-methylthien-2-ylpyrrolidinone
(28) as a white solid: mp 136-137 °C; IR (film) 1675, 1506,
N-5-F or m ylfu r a n -2-ylben za m id e (38). Using the general
procedure for Cu(I)-catalyzed C-N cross-couplings described
above, 5-bromofuran-2-carboxaldehyde and benzamide af-
forded 0.17 g (98%) of 38: mp 137-138 °C; IR (film) 1701,
1670, 1552, 1265, and 1035 cm-1; 1H NMR (CDCl3, 300 MHz)
δ 6.84 (d, 1H, J ) 3.9 Hz), 7.33 (d, 1H, J ) 3.9 Hz), 7.47-7.56
(m, 2H), 7.61 (ddt, 1H, J ) 7.2 and 1.2 Hz), 7.88-7.95 (m,
2H), 9.12 (br s, 1H), and 9.43 (s, 1H); 13C NMR (CDCl3, 100
(41) Bridson, J . N.; Bennett, S. M.; Butler, G. J . Chem. Soc., Chem.
Commun. 1980, 9, 413.
(42) 4-Pentenamide was prepared according to the method of Favino
and co-workers and was carried forward without purification: Favino,
T. F.; Fronza, G.; Fuganti, C.; Fuganti, D.; Grasselli, P.; Mele, A. J .
Org. Chem. 1996, 61, 8975.
(39) Carpenter, A. J .; Chadwick, D. J . J . Org. Chem. 1985, 50, 4362.
(40) Bennani, Y. L.; Hanessian, S. Tetrahedron 1996, 52, 13837.
J . Org. Chem, Vol. 68, No. 7, 2003 2615