Molecular Tectonics
A R T I C L E S
2 are both of intrinsic interest as substrates for Suzuki couplings
and as precursors for the synthesis of a wide range of tetrahedral
molecular building blocks derived from tetraphenylmethane and
tetraphenylsilane.11
General Description of Structures. Crystallization of com-
pounds 1 and 2 was achieved by partial evaporation of solutions
in wet ethyl acetate or by diffusion of hexane into solutions in
wet ethyl acetate,12 and the structures were determined by X-ray
crystallography. Both compounds crystallize in the tetragonal
space group I41/a to give isostructural networks held together
by hydrogen bonding of -B(OH)2 groups, in accord with the
Figure 1. ORTEP view of the structure of tetraboronic acid 2. Disordered
guests are omitted, non-hydrogen atoms are represented by ellipsoids
corresponding to 30% probability, and hydrogen atoms are shown as spheres
of arbitrary size.
(3) For recent studies of hydrogen-bonded supramolecular networks by other
groups, see: Holman, K. T.; Pivovar, A. M.; Swift, J. A.; Ward, M. D.
Acc. Chem. Res. 2001, 34, 107. Kuduva, S. S.; Bla¨ser, D.; Boese, R.;
Desiraju, G. R. J. Org. Chem. 2001, 66, 1621. Mak, T. C. W.; Xue, F. J.
Am. Chem. Soc. 2000, 122, 9860. Sharma, C. V. K.; Clearfield, A. J. Am.
Chem. Soc. 2000, 122, 4394. Corbin, P. S.; Zimmerman, S. C. J. Am. Chem.
Soc. 2000, 122, 3779. Cantrill, S. J.; Pease, A. R.; Stoddart, J. F. J. Chem.
Soc., Dalton Trans. 2000, 3715. Batchelor, E.; Klinowski, J.; Jones, W. J.
Mater. Chem. 2000, 10, 839. Videnova-Adrabinska, V.; Janeczko, E. J.
Mater. Chem. 2000, 10, 555. Reddy, D. S.; Dewa, T.; Endo, K.; Aoyama,
Y. Angew. Chem., Int. Ed. 2000, 39, 4266. Akazome, M.; Suzuki, S.;
Shimizu, Y.; Henmi, K.; Ogura, K. J. Org. Chem. 2000, 65, 6917.
Baumeister, B.; Matile, S. J. Chem. Soc., Chem. Commun. 2000, 913.
Chowdhry, M. M.; Mingos, D. M. P.; White, A. J. P.; Williams, D. J. J.
Chem. Soc., Perkin Trans. 1 2000, 3495. Gong, B.; Zheng, C.; Skrzypczak-
Jankun, E.; Zhu, J. Org. Lett. 2000, 2, 3273. Krische, M. J.; Lehn, J.-M.;
Kyritsakas, N.; Fischer, J.; Wegelius, E. K.; Rissanen, K. Tetrahedron 2000,
56, 6701. Aakero¨y, C. B.; Beatty, A. M.; Nieuwenhuyzen, M.; Zou, M.
Tetrahedron 2000, 56, 6693. Kobayashi, K.; Shirasaka, T.; Horn, E.;
Furukawa, N. Tetrahedron Lett. 2000, 41, 89. Dahal, S.; Goldberg, I. J.
Phys. Org. Chem. 2000, 13, 382. Bishop, R.; Craig, D. C.; Dance, I. G.;
Scudder, M. L.; Ung, A. T. J. Struct. Chem. 1999, 40, 663. Fuchs, K.;
Bauer, T.; Thomann, R.; Wang, C.; Friedrich, C.; Mu¨hlhaupt, R. Macro-
molecules 1999, 32, 8404. Holy´, P.; Za´vada, J.; C´ısarova´, I.; Podlaha, J.
Angew. Chem., Int. Ed. 1999, 38, 381. Karle, I. L.; Ranganathan, D.; Kurur,
S. J. Am. Chem. Soc. 1999, 121, 7156. Chin, D. N.; Palmore, G. T. R.;
Whitesides, G. M. J. Am. Chem. Soc. 1999, 121, 2115. Hanessian, S.;
Saladino, R.; Margarita, R.; Simard, M. Chem. Eur. J. 1999, 5, 2169.
Biradha, K.; Dennis, D.; MacKinnon, V. A.; Sharma, C. V. K.; Zaworotko,
M. J. J. Am. Chem. Soc. 1998, 120, 11894. Schauer, C. L.; Matwey, E.;
Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 1997, 119, 10245.
Bhyrappa, P.; Wilson, S. R.; Suslick, K. S. J. Am. Chem. Soc. 1997, 119,
8492. Lambert, J. B.; Zhao, Y.; Stern, C. L. J. Phys. Org. Chem. 1997, 10,
229. Fe´lix, O.; Hosseini, M. W.; De Cian, A.; Fischer, J. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 102. MacGillavray, L.; Atwood, J. Nature 1997,
389, 469. Adam, K. R.; Atkinson, I. M.; Davis, R. L.; Lindoy, L. F.;
Mahinay, M. S.; McCool, B. J.; Skelton, B. W.; White, A. H. J. Chem.
Soc., Chem. Commun. 1997, 467. Schwiebert, K. E.; Chin, D. N.;
MacDonald, J. C.; Whitesides, G. M. J. Am. Chem. Soc. 1996, 118, 4018.
Kinbara, K.; Hashimoto, Y.; Sukegawa, M.; Nohira, H.; Saigo, K. J. Am.
Chem. Soc. 1996, 118, 3441. Munakata, M.; Wu, L. P.; Yamamoto, M.;
Kuroda-Sowa, T.; Maekawa, M. J. Am. Chem. Soc. 1996, 118, 3117.
Hartgerink, J. D.; Granja, J. R.; Milligan, R. A.; Ghadiri, M. R. J. Am.
Chem. Soc. 1996, 118, 43. Hollingsworth, M. D.; Brown, M. E.; Hillier,
A. C.; Santarsiero, B. D.; Chaney, J. D. Science 1996, 273, 1355.
Kolotuchin, S. V.; Fenlon, E. E.; Wilson, S. R.; Loweth, C. J.; Zimmerman,
S. C. Angew. Chem., Int. Ed. Engl. 1995, 34, 2654. Lawrence, D. S.; Jiang,
T.; Levett, M. Chem. ReV. 1995, 95, 2229. Ermer, O.; Eling, A. J. Chem.
Soc., Perkin Trans. 2 1994, 925. Venkataraman, D.; Lee, S.; Zhang, J.;
Moore, J. S. Nature 1994, 371, 591.
Figure 2. Representation of the system of 5-fold interpenetrated diamondoid
networks generated by tetraboronic acid 2. In this drawing, the tectons lie
at the intersections of solid lines that represent their interactions with four
neighbors by hydrogen bonding according to the motif shown in eq 1. The
independent networks are shown in different shades of gray.
characteristic motif shown in eq 1.13 Because the two structures
are closely similar, only views of the network derived from
tetraphenylsilane 2 are shown (Figures 1-4). The -B(OH)2
groups are oriented tetrahedrally by the relatively rigid tet-
raphenylmethyl and tetraphenylsilyl cores to which they are
attached, so both networks are predisposed to favor diamondoid
connectivity,14 which is observed, or a related three-dimensional,
four-connected arrangement. The average intertectonic distances
between the tetrahedral centers of neighboring hydrogen-bonded
tetraboronic acids are 15.79 and 16.63 Å in the structures of
compounds 1 and 2, respectively. As a result, each diamondoid
network is open enough to permit interpenetration by four
independent diamondoid networks (Figure 2).15
(4) Nangia, A.; Desiraju, G. R. Top. Curr. Chem. 1998, 198, 57.
(5) Rettig, S. J.; Trotter, J. Can. J. Chem. 1977, 55, 3071.
(6) Zhdankin, V. V.; Persichini, P. J., III; Zhang, L.; Fix, S.; Kiprof, P.
Tetrahedron Lett. 1999, 40, 6705. Schilling, B.; Kaiser, V.; Kaufmann, D.
E. Chem. Ber. 1997, 130, 923. Akita, T.; Kobayashi, K. AdV. Mater. 1997,
9, 346. Bradley, D. C.; Harding, I. S.; Keefe, A. D.; Motevalli, M.; Zheng,
D. H. J. Chem. Soc., Dalton Trans. 1996, 3931. Pilkington, M.; Wallis, J.
D.; Larsen, S. J. Chem. Soc., Chem. Commun. 1995, 1499. Gainsford, G.
J.; Meinhold, R. H.; Woolhouse, A. D. Acta Crystallogr., Sect. C 1995,
C51, 2694. Scouten, W. H.; Liu, X.-C.; Khangin, N.; Mullica, D. F.;
Sappenfield, E. L. J. Chem. Cryst. 1994, 24, 621. Soundararajan, S.; Duesler,
E. N.; Hageman, J. H. Acta Crystallogr., Sect. C 1993, C49, 690. Feulner,
H.; Linti, G.; Noth, H. Chem. Ber. 1990, 123, 1841. Zvonkova, Z. V.;
Gluskova, V. P. Kristallografija, SSSR 1958, 3, 559.
Inclusion of Guests. Despite this 5-fold interpenetration, the
structures of compounds 1 and 2 both retain very significant
volume for the inclusion of guests. Specifically, crystallization
produces inclusion compounds of approximate compositions 1‚
(7) The dimers of boronic acids have been overlooked in previous systematic
studies of cyclic hydrogen-bonded motifs. Davis, R. E.; Bernstein, J. Trans.
Am. Crystallogr. Assoc. 1999, 33, 7. Allen, F. H.; Raithby, P. R.; Shields,
G. P.; Taylor, R. J. Chem. Soc., Chem. Commun. 1998, 1043.
(8) Hydrogen bonding of a monoester of a phenylboronic acid has recently
been observed in a molecular network. Davis, C. J.; Lewis, P. T.;
Billodeaux, D. R.; Fronczek, F. R.; Escobedo, J. O.; Strongin, R. M. Org.
Lett. 2001, 3, 2443.
(11) Fournier, J.-H.; Wang, X.; Wuest, J. D. Submitted for publication.
(12) Wet ethyl acetate was used to disfavor the formation of boroxines by
dehydration of tetraboronic acids 1 and 2.
(13) Crystallization of tetraboronic acids 1 and 2 from primarily aqueous mixtures
appears to yield a different structure that is currently being studied.
(14) For a review of diamondoid hydrogen-bonded networks, see: Zaworotko,
M. J. Chem. Soc. ReV. 1994, 23, 283.
(15) For discussions of interpenetration in networks, see: Batten, S. R. Cryst.
Eng. Commun. 2001, 18, 1; Batten, S. R.; Robson, R. Angew. Chem., Int.
Ed. 1998, 37, 1460.
(9) For example, see: Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Acc.
Chem. Res. 2001, 34, 865.
(10) Wilson, L. M.; Griffin, A. C. J. Mater. Chem. 1993, 3, 991.
9
J. AM. CHEM. SOC. VOL. 125, NO. 4, 2003 1003