Copper(II) Coordination Polymers Involving 2,2-(4,6-Dinitro-1,3-phenylenedioxy)diacetic Acid
ture, on the other hand, it also prevents the metal ions to coor- atoms and prevents the formation of high dimensional com-
dinate with more L ligands to form a higher dimensional net- plex. The luminescent curves of complexes 1–3 and H2L indi-
work.
cate that the good planar can increase the luminescent inten-
sities in coordination complexes.
3.2 Luminescent Properties
References
The emission spectra of complexes 1–3 and H2L in solid
state at room temperature were investigated. As shown in Fig-
ure 4, H2L shows a strong fluorescent emission at 460 nm,
which is different with that of the benzene ring (254 nm). The
red shift is perhaps caused by the introduction of nitro groups.
Complexes 1–3 show similar luminescent spectra with H2L
except for the intensities. The emissions can probably be as-
signed to the interligand (π–π*) fluorescent emission because
similar emission under the same conditions are observed for
the free H2L. It is clear that the coordination bonds signifi-
cantly influence the luminescence intensities of three com-
plexes. For complexes 1 and 3, due to the enhanced structural
rigidity and reduced fluorescence quenching effect.[33,34] the
luminescent intensities are stronger than that of free H2L. The
luminescent intensity of complex 2 is weaker than that of free
H2L perhaps due to the existence of solvent molecule DMF,
which destroys the coplanar of the complex.
[1] H. A. Habib, J. Sanchiz, C. Janiak, Dalton Trans. 2008, 1734.
[2] H. A. Habib, J. Sanchiz, C. Janiak, Dalton Trans. 2008, 4877.
[3] H. A. Habib, J. Sanchiz, C. Janiak, Inorg. Chim. Acta 2009, 362,
2452.
[4] C. Pettinari, R. Pettinari, Coord. Chem. Rev. 2005, 249, 545.
[5] B. Rather, M. J. Zaworotko, Chem. Commun. 2003, 7, 830.
[6] P. M. Forster, A. K. Cheetham, Angew. Chem. Int. Ed. 2002, 41,
457.
[7] L. Carlucci, G. Ciani, D. M. Proserpio, L. Spadacini, Crys-
tEngComm 2004, 6, 96.
[8] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 78, 1629.
[9] O. R. Evans, W. B. Lin, Chem. Mater. 2001, 13, 2705.
[10] Z. H. Zhang, T. Okamura, Y. Hasegawa, H. Kawaguchi, L. Y.
Kong, W. Y. Sun, N. Ueyama, Inorg. Chem. 2005, 44, 6219.
[11] H. F. Zhu, J. Fan, T. Okamura, Z. H. Zhang, G. X. Liu, K. B. Yu,
W. Y. Sun, N. Ueyama, Inorg. Chem. 2006, 45, 3941.
[12] H. F. Zhu, Z. H. Zhang, W. Y. Sun, T. Okamura, N. Ueyama,
Cryst. Growth Des. 2005, 5, 177.
[13] S. Kitagawa, M. Kondo, Bull. Chem. Soc. Jpn. 1998, 71, 1739.
[14] H. Zheng, E. Q. Gao, Z. M. Wang, C. H. Yan, M. Kurmoo, Inorg.
Chem. 2005, 44, 862.
[15] X. L. Hong, J. F. Bai, Y. Song, Y. Z. Li, Y. Pan, Eur. J. Inorg.
Chem. 2006, 3659.
[16] C. Janiak, Dalton Trans. 2003, 2781.
[17] M. Lehmann, M. Marcos, J. L. Serrano, T. Sierra, C. Bolm, K.
Weickhardt, A. Magnus, G. Moll, Chem. Mater. 2001, 13, 4374.
[18] B. D. Pate, S. M. Choi, W. Z. Ulrike, D. V. Baxter, J. M. Zaleski,
M. H. Chisholm, Chem. Mater. 2002, 14, 1930.
4. Conclusions
In three common solvents (H2O, DMF, and DMSO), we
synthesized three copper-containing complexes base on the L
[19] C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366.
[20] A. U. Czaja, N. Trukhan, U. Mullerb, Chem. Soc. Rev. 2009, 38,
1284.
[21] M. P. Suh, Y. E. Cheon, E. Y. Lee, Coord. Chem. Rev. 2008, 252,
1007.
[22] K. Hindson, Eur. J. Inorg. Chem. 2010, 3683.
[23] S. Kitagawa, S. Natarajan, Eur. J. Inorg. Chem. 2010, 3685.
[24] G. Smith, E. J. O’Reilly, C. H. L. Kennard, Polyhedron 1987, 6,
871.
[25] M. Mccann, R. M. T. Casey, M. Devereux, M. Curran, C. Cardin,
A. Todd, Polyhedron 1996, 15, 2117.
[26] J. Bickley, R. P. Bonar-Law, M. A. B. Martinez, A. Steiner, Inorg.
Chim. Acta 2004, 357, 891.
[27] Y. M. Dai, E. Tang, Z. J. Li, Y. G. Yao, Acta Crystallogr. Sect. C
2005, 61, m61.
[28] D. S. Ma, X. M. Zhang, H. Zhang, D. Mu, G. F. Hou, Acta Crys-
tallogr. Sect. E 2009, 65, o2456.
[29] D. S. Ma, X. M. Zhang, D. Mu, G. F. Hou, Acta Crystallogr. Sect.
E 2009, 65, o2756.
Figure 4. Fluorescent spectra of ligand and complexes 1–3.
[30] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure
Solution, University of Göttingen, Göttingen, Germany, 1997.
[31] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Re-
finement, University of Göttingen, Göttingen, Germany, 1997.
[32] A. W. Addison, T. N. Rao, J. Chem. Soc., Dalton Trans. 1984,
1349.
[33] B. Dutta, P. Bag, U. Flörke, K. Nag, Inorg. Chem. 2005, 44, 147.
[34] S. Mizukami, H. Houjou, K. Sugaya, E. Koyama, H. Tokuhisa,
T. Sasaki, M. Kanesato, Chem. Mater. 2005, 17, 50.
ligand. In all of the three complexes, solvent molecules coordi-
nate with centered metal atoms through oxygen atoms. For
complexes 1 and 2, due to the existence of nitro groups in L
ligands, the large steric hindrances make the copper ions only
coordinating with L ligands at one side and form a 1D chain-
like structure. In addition, there are abundant hydrogen bonds
in the complexes, which link the chains into 3D supramolec-
ular network. For complex 3, the existence of the second li-
gand, 2,2Ј-bipy, occupies the coordination sites of copper
Received: June 30, 2011
Published Online: November 29, 2011
Z. Anorg. Allg. Chem. 2012, 236–241
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
241