C O M M U N I C A T I O N S
Scheme 4 a
cocatalyst22 followed by MOM protection of the secondary alcohols,
removal23 of the TIPS ether, and saponification of the methyl esters
provided a single stereoisomer of vinyl nitrile 20. Selective
macrolactonization of diacid 20 was subsequently performed by
carboxyl activation with trichlorobenzoyl chloride.24 Final depro-
tection of the MOM ethers produced synthetic borrelidin, whose
spectral data (1H, 13C, and HRMS) are in agreement with the
reported values for 1.
In conclusion, we have reported the first total synthesis of
borrelidin, which relied on our ability to execute large-scale
asymmetric reductive aldol reactions and also required introduction
of methods for reversing the usual regioselection in hydrostannyl-
ation of propargyl alcohols. Our synthesis sequence allows for late
stage derivatization of the cyanodiene core, which may allow for
discovery of nontoxic analogues of the natural product. These efforts
are currently underway.
a (a) (i) t-BuLi, ZnCl2, (ii) Pd(PPh3)4, 8 (58%); (b) TBAF (87%); (c) H2
(600 psi), 30 mol % Rh[(nbd)dppb]BF4 (86%); (d,e) see the Supporting
Information for these details.
Scheme 5 a
Acknowledgment. The authors thank Prof. David Ball of CSU
Chico for a generous donation of natural borrelidin. This work was
supported by the NIGMS (GM64451-01). J.P.M. thanks Astra-
Zeneca, Bristol-Myers Squibb, Dow, DuPont, GlaxoSmithKline,
and the Packard Foundation for support. M.O.D. is the recipient of
a Wellcome Trust Fellowship.
a (a) KOH, H2O2, MeOH (73%); (b) (COCl)2; (c) H2 (60 psi), 10% Pd/
C, 2,6-lutidine (74%, two steps); (d) (+)-Ipc2B(allyl) (82%); (e) 1 N NaOH,
MeOH (99%); (f) MeI, NaHCO3 (92%); (g) TIPSOTf, 2,6-lutidine (96%);
(h) OsO4, NMO, then NaIO4 (93%); (i) CrCl2, CHI3 (83%).
Scheme 6 a
Supporting Information Available: Characterization data and
experimental procedures (PDF). This material is available free of charge
References
(1) Berger, J.; Jampolsky, L. M.; Goldberg, M. W. Arch. Biochem. 1949, 22,
476.
(2) Paetz, W.; Nass, G. Eur. J. Biochem. 1973, 35, 331.
(3) Lumb, M.; Macey, P. E.; Spyvee, J.; Whitmarsh, J. M.; Wright, R. D.
Nature 1965, 206, 263.
(4) Tsuchiya, E.; Yukawa, M.; Miyakawa, T.; Kimura, K.; Takahashi, H. J.
Antibiot. 2001, 54, 84.
(5) Wakabayashi, T.; Kageyama, R.; Naruse, N.; Tsukahara, N.; Funahashi,
Y.; Kitoh, K.; Watanabe, Y. J. Antibiot. 1997, 50, 671.
(6) Keller-Schierlein. HelV. Chim. Acta 1967, 54, 44.
(7) (a) Anderson, B. F.; Herlt, A. J.; Rickards, R. W.; Robertson, G. B. Aust.
J. Chem. 1989, 42, 717. See also: (b) Kuo, M.-S.; Yurek, D. A.;
Kloosterman, D. A. J. Antibiot. 1989, 42, 1006.
(8) For partial syntheses, see: (a) Haddad, N.; Brik, A.; Grishko, M.
Tetrahedron Lett. 1997, 38, 6079. (b) Xiang, A. X. Dissertation Thesis,
University of California at San Diego, 2000.
(9) (a) Zhou, C.-X.; Duffey, M. O.; Taylor, S. J.; Morken, J. P. Org. Lett.
2001, 3, 1829. (b) Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am.
Chem. Soc. 2000, 122, 4528.
a (a) Pd(PPh3)4, CuI, TEA (94%); (b) Ac2O, DMAP (94%); (c)
PdCl2(PPh3)2, Bu3SnH; (d) I2 (97%, two steps, 1:1 regioisomer mixture);
(e) K2CO3, MeOH, -25 °C (66%); (f) Bu3SnCN, CuI, Pd(PPh3)4 (97%);
(g) (MeO)2CH2, P2O5 (85%); (h) TASF (77%); (i) 3 M NaOH, THF (84%);
(j) 2,4,6-trichlorobenzoyl chloride, TEA, DMAP; (k) Me2BBr, -78 °C
(36%, two steps).
(10) Nicolau, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106, 5734.
(11) (a) Sakakibara, Y.; Enami, H.; Ogawa, H.; Fujimoto, S.; Kato, H.;
Kunitake, K.; Sasaki, K.; Sakai, M. Bull. Chem. Soc. Jpn. 1995, 68, 3137.
(b) Hinojosa, S.; Delgado, A.; Llebaria, A. Tetrahedron Lett. 1999, 40, 1057.
(12) (a) Alami, M.; Ferri, F. Synlett 1996, 755. For a review on metal-catalyzed
hydrostannation of alkynes, see: (b) Smith, N. D.; Mancuso, J.; Lautens,
M. Chem. ReV. 2000, 100, 3257.
Coupling of 8 and 12 ultimately allowed for synthesis of 3
(Scheme 4). In this approach, alkyl iodide 12 was converted to the
mixed dialkyl zinc and used in a modified Negishi coupling with
vinyl iodide 8 to give 13.17 After deprotection of the silyl ethers,
the C6 stereocenter was established through a directed hydrogena-
tion to give 14.18 Our attention then turned to the conversion of
compound 14 to fragment 3. This was accomplished in an expedient
manner in a 35% overall yield through the intermediacy of 15.19
Vinyl iodide 4, which is required for coupling to alkyne 3, was
prepared from the known chiral bis-menthyl ester 16, which was
readily accessed via efficient carbocyclization of (+)-dimenthyl-
succinate as described by Yamamoto (Scheme 5).20 Monosaponi-
fication followed by Rosenmund reduction and Brown allylboration
furnished the enantiopure alcohol 17, which was converted to 4 in
32% overall yield from 16.
The critical cross coupling of the subtargets 3 and 4 was best
achieved by a Sonogashira reaction to give, after treatment with
acetic anhydride, enyne 18 (Scheme 6).21 Hydrostannylation of
enyne 18, followed by iodination and deacetylation of the resulting
vinyl stannane, afforded vinyl iodide 19 along with its regioisomer,
which was removed via silica gel chromatography (1:1 ratio,
Scheme 6). Palladium-catalyzed cyanation of 19 using CuI as a
(13) For the Pd(0)-catalyzed hydrostannation of terminal alkynol derivatives,
see: Rice, M. B.; Whitehead, S. L.; Horvath, C. M.; Muchnij, J. A.;
Maleczka, R. E., Jr. Synthesis 2001, 1495.
(14) 1H NMR analysis showed that all reactions proceeded to completion.
(15) It is also tenable that a directing effect accounts for the turnover in
regioselectivity (see ref 13). However, these reactions provide similar levels
of selectivity in both CH2Cl2 and THF solvents.
(16) Myers, A. G.; Yang, B. H.; Chen, H.; Mckinstry, L.; Kopecky, D. J.;
Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(17) Smith, A. B.; Beauchamp, Y. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.;
Arimoto,H.;Jones,D.R.;Kobayashi,K.J.Am.Chem.Soc.2000,122,8654.
(18) Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26, 190.
(19) See the Supporting Information for synthetic schemes and procedures.
(20) Misumi, A.; Iwanaga, K.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc.
1985, 107, 3343.
(21) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467. (b) Chang, J.; Paquette, L. A. Org. Lett. 2002, 4, 253.
(22) For rate enhancements with the use of CuI in Stille coupling reactions,
see: Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S.
J. Org. Chem. 1994, 59, 5905.
(23) Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.; Coffey, D. S.;
Roush, W. R. J. Org. Chem. 1998, 63, 6436.
(24) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989.
JA028941U
9
J. AM. CHEM. SOC. VOL. 125, NO. 6, 2003 1459